Deep Reinforcement Learning for Multiobjective Optimization

数学优化 计算机科学 强化学习 人工神经网络 水准点(测量) 帕累托原理 人工智能 一般化 数学 大地测量学 数学分析 地理
作者
Kaiwen Li,Tao Zhang,Rui Wang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (6): 3103-3114 被引量:235
标识
DOI:10.1109/tcyb.2020.2977661
摘要

This study proposes an end-to-end framework for solving multi-objective optimization problems (MOPs) using Deep Reinforcement Learning (DRL), that we call DRL-MOA. The idea of decomposition is adopted to decompose the MOP into a set of scalar optimization subproblems. Then each subproblem is modelled as a neural network. Model parameters of all the subproblems are optimized collaboratively according to a neighborhood-based parameter-transfer strategy and the DRL training algorithm. Pareto optimal solutions can be directly obtained through the trained neural network models. In specific, the multi-objective travelling salesman problem (MOTSP) is solved in this work using the DRL-MOA method by modelling the subproblem as a Pointer Network. Extensive experiments have been conducted to study the DRL-MOA and various benchmark methods are compared with it. It is found that, once the trained model is available, it can scale to newly encountered problems with no need of re-training the model. The solutions can be directly obtained by a simple forward calculation of the neural network; thereby, no iteration is required and the MOP can be always solved in a reasonable time. The proposed method provides a new way of solving the MOP by means of DRL. It has shown a set of new characteristics, e.g., strong generalization ability and fast solving speed in comparison with the existing methods for multi-objective optimizations. Experimental results show the effectiveness and competitiveness of the proposed method in terms of model performance and running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的高山完成签到 ,获得积分10
刚刚
smottom应助聆风采纳,获得20
1秒前
婷婷发布了新的文献求助10
1秒前
QQ发布了新的文献求助10
1秒前
沉静的红酒完成签到,获得积分10
2秒前
能干冰露完成签到,获得积分10
2秒前
3秒前
pluto应助yin采纳,获得50
3秒前
Lucas应助辉仔采纳,获得10
3秒前
5秒前
穆思柔完成签到,获得积分10
7秒前
7秒前
无奈凡波完成签到 ,获得积分10
9秒前
zjmsb完成签到,获得积分20
10秒前
泡泡啰叽发布了新的文献求助10
11秒前
哈哈哈666完成签到,获得积分10
13秒前
13秒前
14秒前
1123完成签到,获得积分10
14秒前
皇家搓澡师完成签到,获得积分10
14秒前
唐_完成签到 ,获得积分10
15秒前
aaaaaa发布了新的文献求助10
15秒前
大力的尔安完成签到,获得积分10
16秒前
12345678发布了新的文献求助10
17秒前
17秒前
17秒前
酷酷的冰真完成签到,获得积分10
17秒前
孺子牛完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
19秒前
BESTZJ完成签到,获得积分10
20秒前
20秒前
明清远完成签到,获得积分10
21秒前
lys发布了新的文献求助10
22秒前
12发布了新的文献求助10
23秒前
23秒前
23秒前
江南第八发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421