Deep Reinforcement Learning for Multiobjective Optimization

数学优化 计算机科学 强化学习 人工神经网络 水准点(测量) 帕累托原理 人工智能 一般化 数学 大地测量学 数学分析 地理
作者
Kaiwen Li,Tao Zhang,Rui Wang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (6): 3103-3114 被引量:235
标识
DOI:10.1109/tcyb.2020.2977661
摘要

This study proposes an end-to-end framework for solving multi-objective optimization problems (MOPs) using Deep Reinforcement Learning (DRL), that we call DRL-MOA. The idea of decomposition is adopted to decompose the MOP into a set of scalar optimization subproblems. Then each subproblem is modelled as a neural network. Model parameters of all the subproblems are optimized collaboratively according to a neighborhood-based parameter-transfer strategy and the DRL training algorithm. Pareto optimal solutions can be directly obtained through the trained neural network models. In specific, the multi-objective travelling salesman problem (MOTSP) is solved in this work using the DRL-MOA method by modelling the subproblem as a Pointer Network. Extensive experiments have been conducted to study the DRL-MOA and various benchmark methods are compared with it. It is found that, once the trained model is available, it can scale to newly encountered problems with no need of re-training the model. The solutions can be directly obtained by a simple forward calculation of the neural network; thereby, no iteration is required and the MOP can be always solved in a reasonable time. The proposed method provides a new way of solving the MOP by means of DRL. It has shown a set of new characteristics, e.g., strong generalization ability and fast solving speed in comparison with the existing methods for multi-objective optimizations. Experimental results show the effectiveness and competitiveness of the proposed method in terms of model performance and running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanshapo发布了新的文献求助10
1秒前
小蘑菇应助熊囧囧采纳,获得10
1秒前
饱满以云完成签到,获得积分10
1秒前
高贵的晓筠完成签到 ,获得积分10
2秒前
yh完成签到,获得积分10
3秒前
咖飞完成签到,获得积分10
3秒前
Oct_Y完成签到,获得积分10
3秒前
桐桐应助lilei采纳,获得10
3秒前
Earnestlee完成签到,获得积分10
4秒前
ark861023完成签到,获得积分10
5秒前
傅31完成签到,获得积分10
6秒前
6秒前
6秒前
yanshapo完成签到,获得积分10
7秒前
7秒前
SYLH应助机智的天曼采纳,获得10
7秒前
8秒前
duts完成签到 ,获得积分10
8秒前
learnerZ_2023完成签到,获得积分10
8秒前
稳稳发布了新的文献求助30
8秒前
czt完成签到 ,获得积分10
9秒前
卡乐瑞咩吹可完成签到,获得积分10
9秒前
tjzbw完成签到,获得积分10
9秒前
翟大有完成签到 ,获得积分0
10秒前
迟大猫应助fcyyc采纳,获得10
10秒前
文舒发布了新的文献求助10
11秒前
爆米花应助蒲叶采纳,获得10
11秒前
11秒前
温暖焱发布了新的文献求助10
12秒前
SCI完成签到,获得积分10
12秒前
乐乐应助tesla采纳,获得10
12秒前
Lenacici完成签到,获得积分10
12秒前
x5kyi完成签到,获得积分10
12秒前
hh完成签到 ,获得积分20
13秒前
冲鸭完成签到,获得积分10
13秒前
13秒前
azai发布了新的文献求助30
13秒前
玉崟完成签到 ,获得积分10
13秒前
龙痕完成签到,获得积分10
13秒前
傲娇颖完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910