Deep Reinforcement Learning for Multiobjective Optimization

数学优化 计算机科学 强化学习 人工神经网络 水准点(测量) 帕累托原理 人工智能 一般化 数学 数学分析 大地测量学 地理
作者
Kaiwen Li,Tao Zhang,Rui Wang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (6): 3103-3114 被引量:268
标识
DOI:10.1109/tcyb.2020.2977661
摘要

This study proposes an end-to-end framework for solving multi-objective optimization problems (MOPs) using Deep Reinforcement Learning (DRL), that we call DRL-MOA. The idea of decomposition is adopted to decompose the MOP into a set of scalar optimization subproblems. Then each subproblem is modelled as a neural network. Model parameters of all the subproblems are optimized collaboratively according to a neighborhood-based parameter-transfer strategy and the DRL training algorithm. Pareto optimal solutions can be directly obtained through the trained neural network models. In specific, the multi-objective travelling salesman problem (MOTSP) is solved in this work using the DRL-MOA method by modelling the subproblem as a Pointer Network. Extensive experiments have been conducted to study the DRL-MOA and various benchmark methods are compared with it. It is found that, once the trained model is available, it can scale to newly encountered problems with no need of re-training the model. The solutions can be directly obtained by a simple forward calculation of the neural network; thereby, no iteration is required and the MOP can be always solved in a reasonable time. The proposed method provides a new way of solving the MOP by means of DRL. It has shown a set of new characteristics, e.g., strong generalization ability and fast solving speed in comparison with the existing methods for multi-objective optimizations. Experimental results show the effectiveness and competitiveness of the proposed method in terms of model performance and running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助鳗鱼蛋挞采纳,获得10
1秒前
1秒前
1秒前
共产主义接班人完成签到,获得积分10
1秒前
病猫发布了新的文献求助10
1秒前
2秒前
科研通AI6应助蚂蚁的奋斗采纳,获得10
2秒前
大气乐儿发布了新的文献求助10
2秒前
正直的雁开完成签到,获得积分20
2秒前
所所应助人不犯二枉少年采纳,获得10
2秒前
嗯嗯完成签到,获得积分20
3秒前
勤奋的灯发布了新的文献求助10
4秒前
利好完成签到 ,获得积分10
4秒前
科研通AI6应助ash采纳,获得10
4秒前
打打应助ash采纳,获得10
4秒前
嘻嘻完成签到 ,获得积分10
5秒前
锅嘚硬发布了新的文献求助10
5秒前
拼搏的飞薇完成签到,获得积分10
5秒前
无奈凉面完成签到,获得积分10
6秒前
耳朵儿歌发布了新的文献求助100
6秒前
Proddy完成签到,获得积分10
6秒前
7秒前
大模型应助文静盈采纳,获得10
7秒前
sia完成签到,获得积分10
7秒前
饱满以松发布了新的文献求助10
7秒前
7秒前
小鱼完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
科研通AI6应助洁净的千凡采纳,获得10
8秒前
317完成签到,获得积分10
8秒前
lin完成签到 ,获得积分10
8秒前
9秒前
輕語完成签到,获得积分10
10秒前
10秒前
活ni的pig完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257658
求助须知:如何正确求助?哪些是违规求助? 4419729
关于积分的说明 13757299
捐赠科研通 4293125
什么是DOI,文献DOI怎么找? 2355777
邀请新用户注册赠送积分活动 1352208
关于科研通互助平台的介绍 1313034