细胞色素c
过氧化物酶
细胞色素
辅酶Q-细胞色素c还原酶
细胞色素c过氧化物酶
化学
生物化学
细胞色素C1
细胞色素b
酵母
酶
立体化学
线粒体
基因
线粒体DNA
作者
Haotian Lei,Shiloh M. Nold,Luis Jung Motta,Bruce E. Bowler
出处
期刊:Biochemistry
[American Chemical Society]
日期:2019-05-31
卷期号:58 (26): 2921-2933
被引量:13
标识
DOI:10.1021/acs.biochem.9b00295
摘要
Mitochondrial cytochrome c is a highly conserved protein in eukaryotes. Certain functions of cytochrome c have been tuned during evolution. For instance, the intrinsic peroxidase activity of human cytochrome c is much lower than that of the yeast counterpart. Structural studies on K72A yeast iso-1-cytochrome c [McClelland, L. J., et al. (2014) Proc. Natl. Acad. Sci. USA, 111, 6648-6653] revealed that residues 81 and 83 in Ω-loop D (residues 70-85) may be gatekeeper residues for the peroxidase activity linked to intrinsic apoptosis. Amino acids at both positions evolve to more sterically demanding amino acids. We hypothesized that residues 81 and 83 evolved such that steric constraints at these positions tune down the peroxidase activity of human cytochrome c. To test this hypothesis, I81A and V83G variants of human cytochrome c were prepared. Our results show that the I81A substitution significantly influences the thermodynamics and kinetics of access to alternate conformers of human cytochrome c, while the V83G substitution has a more modest effect on these properties. The I81A variant also shows a significant enhancement in peroxidase activity, particularly below pH 7, whereas the V83G variant has a similar peroxidase activity to wild-type human cytochrome c. However, neither variant increases the peroxidase activity of human cytochrome c to the level of yeast iso-1-cytochrome c, indicating that other substructures of cytochrome c are also involved in tuning the intrinsic peroxidase activity of mitochondrial cytochrome c.
科研通智能强力驱动
Strongly Powered by AbleSci AI