Deep learning enabled cutting tool selection for special-shaped machining features of complex products

机械加工 特征(语言学) 背景(考古学) 人工智能 计算机科学 特征识别 过程(计算) 刀具 特征选择 工程制图 选择(遗传算法) 工程类 机器学习 人工神经网络 模式识别(心理学) 机械工程 哲学 古生物学 操作系统 生物 语言学
作者
Guanghui Zhou,Xiongjun Yang,Chao Zhang,Li Zhi,Zhongdong Xiao
出处
期刊:Advances in Engineering Software [Elsevier]
卷期号:133: 1-11 被引量:21
标识
DOI:10.1016/j.advengsoft.2019.04.007
摘要

Each complex product contains many special-shaped machining features required to be machined by the specific customized cutting tools. In this context, we propose a deep learning based cutting tool selection approach, which contributes to make it effective and efficiency for and also improves the intelligence of the process of cutting tool selection for special-shaped machining features of complex products. In this approach, one-to-one correspondence between each special-shaped machining feature and each cutting tool is first analyzed and established. Then, the problem of cutting tool selection could be transformed into a feature recognition problem. To this end, each special-shaped machining feature is represented by its multiple drawing views that contain rich information for differentiating each of these features. With numbers of these views as training set, a deep residual network (ResNet) is trained successfully for feature recognition, where the recognized feature's cutting tool could also be automatically selected based on the one-to-one correspondence. With the learned ResNet, engineers could use an engineering drawing to select cutting tools intelligently. Finally, the proposed approach is applied to the special-shaped machining features of a vortex shell workpiece to demonstrate its feasibility. The presented approach provides a valuable insight into the intelligent cutting tool selection for special-shaped machining features of complex products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
日喝抽打发布了新的文献求助10
刚刚
sophia1211发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
雨筠完成签到,获得积分20
1秒前
2秒前
热心枕头发布了新的文献求助10
2秒前
ccc发布了新的文献求助20
3秒前
3秒前
4秒前
小蘑菇应助平常的擎宇采纳,获得10
5秒前
5秒前
6秒前
青椒发布了新的文献求助10
6秒前
LZR完成签到,获得积分10
7秒前
w_发布了新的文献求助10
7秒前
只然应助学术小白采纳,获得10
8秒前
英姑应助学术小白采纳,获得10
8秒前
8秒前
科研通AI2S应助HUAJIAO采纳,获得10
8秒前
勤恳发布了新的文献求助10
9秒前
9秒前
乐乐应助luu采纳,获得10
12秒前
newyear发布了新的文献求助10
12秒前
13秒前
LHF发布了新的文献求助10
13秒前
14秒前
guo发布了新的文献求助10
14秒前
田様应助Rachel采纳,获得10
14秒前
笑点低的豪完成签到,获得积分10
14秒前
15秒前
丰知然应助畅快的枫采纳,获得10
15秒前
16秒前
天天快乐应助我要发论文采纳,获得10
16秒前
虚幻向秋发布了新的文献求助10
16秒前
柚子发布了新的文献求助10
17秒前
闳楠完成签到,获得积分20
17秒前
李剑鸿发布了新的文献求助800
18秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309308
求助须知:如何正确求助?哪些是违规求助? 2942666
关于积分的说明 8510202
捐赠科研通 2617790
什么是DOI,文献DOI怎么找? 1430403
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649286