Korteweg–de Vries方程
孤子
波包
傅里叶变换
翻译(生物学)
领域(数学)
相(物质)
快速傅里叶变换
信号处理
物理
计算机科学
非线性系统
算法
数学
量子力学
电信
雷达
纯数学
信使核糖核酸
基因
生物化学
化学
作者
Peter J. Prins,Sander Wahls
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2019-01-01
卷期号:7: 122914-122930
被引量:21
标识
DOI:10.1109/access.2019.2932256
摘要
Several non-linear fluid mechanical processes, such as wave propagation in shallow water, are known to generate solitons: localized waves of translation. Solitons are often hidden in a wave packet at the beginning and only reveal themselves in the far-field. With a special signal processing technique known as the non-linear Fourier transform (NFT), solitons can be detected and characterized before they emerge. In this paper, we present a new algorithm aimed at computing the phase shift of solitons in processes governed by the Korteweg-de Vries (KdV) equation. In numerical examples, the new algorithm is found to perform reliably even in cases where existing algorithms break down.
科研通智能强力驱动
Strongly Powered by AbleSci AI