Preparation of Au@Ag core–shell nanoparticle decorated silicon nanowires for bacterial capture and sensing combined with laser induced breakdown spectroscopy and surface-enhanced Raman spectroscopy

材料科学 纳米技术 生物界面 拉曼光谱 表面增强拉曼光谱 纳米颗粒 光谱学 纳米线 基质(水族馆) 银纳米粒子 力谱学 蚀刻(微加工) 化学工程 原子力显微镜 拉曼散射 光电子学 图层(电子) 光学 物理 地质学 工程类 海洋学 量子力学
作者
Wenlong Liao,Qingyu Lin,Ya Xu,Enlai Yang,Yixiang Duan
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:11 (12): 5346-5354 被引量:57
标识
DOI:10.1039/c9nr00019d
摘要

Three-dimensional nano-biointerfaces, emerging as significant cell-guiding platforms, have attracted great attention. Nevertheless, complicated chemical modifications and instability of bio-ligands limit their widespread application. In this study, a novel biointerface, based on silicon nanowires (SiNWs) array, was prepared for bacterial capture and sensing. Vertically aligned SiNWs were fabricated via metal assisted chemical etching and decorated with uniform Au@Ag core-shell nanoparticles (Au@Ag NPs). These deposited Au@Ag NPs formed multi-scale topographic structures with nanowires, which provided effective attachment sites for bacterial adhesins. In addition, the Au cores of Au@Ag NPs enhanced the activity of the surface silver atoms and promoted the binding of Au@Ag NPs to bacteria. Thus, the Au@Ag NPs decorated SiNWs (SiNWs-Au@Ag) substrate exhibited high capture capacity for bacteria in drinking water (8.6 and 5.5 × 106 cells per cm2 for E. coli and S. aureus in 40 min, respectively) via physical and chemical effects. Bacteria in drinking water can be sensitively detected by using a combination of laser induced breakdown spectroscopy (LIBS) and label based surface-enhanced Raman spectroscopy (SERS) techniques. Due to the antibacterial activity of Au@Ag NPs and the physical stress exerted on SiNWs, the prepared biointerface also showed high antibacterial rates towards both Gram-positive and Gram-negative bacteria strains. With these excellent properties, the flexible sensing platform might open a new avenue for the prevention and control of microbial hazards in water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wali完成签到 ,获得积分0
刚刚
祈愿完成签到,获得积分10
刚刚
氘代乙腈是不贵的呀完成签到,获得积分10
1秒前
小罗咩咩发布了新的文献求助10
1秒前
等待的盼波完成签到,获得积分10
1秒前
wminghui惠完成签到 ,获得积分10
1秒前
酷酷薯片发布了新的文献求助10
2秒前
3秒前
椰椰发布了新的文献求助10
3秒前
博定尚关注了科研通微信公众号
3秒前
3秒前
搜集达人应助Emma采纳,获得10
4秒前
5秒前
Hello应助zai采纳,获得10
6秒前
Sui完成签到,获得积分10
6秒前
7秒前
Singularity应助Ma采纳,获得10
8秒前
祈愿发布了新的文献求助150
10秒前
跨进行发布了新的文献求助10
10秒前
11秒前
飞云发布了新的文献求助10
11秒前
昔莳完成签到,获得积分10
12秒前
12秒前
执念发布了新的文献求助10
13秒前
星辰大海应助cjy123采纳,获得10
13秒前
CipherSage应助zhang采纳,获得10
13秒前
缥缈的厉完成签到 ,获得积分10
14秒前
14秒前
徽猷发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
Emma发布了新的文献求助10
16秒前
16秒前
李子木发布了新的文献求助10
18秒前
zai发布了新的文献求助10
18秒前
棉籽完成签到 ,获得积分10
18秒前
朱瑾琛发布了新的文献求助30
19秒前
笨笨雨莲关注了科研通微信公众号
20秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309982
求助须知:如何正确求助?哪些是违规求助? 2943089
关于积分的说明 8512665
捐赠科研通 2618199
什么是DOI,文献DOI怎么找? 1430922
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490