Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption

石墨烯 吸收(声学) 反射损耗 兴奋剂 材料科学 多孔性 衰减 纳米材料 电磁辐射 光电子学 纳米技术 光学 复合材料 复合数 物理
作者
Panbo Liu,Yiqing Zhang,Jing Yan,Ying Huang,Long Xia,Zhaoxu Guang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:368: 285-298 被引量:709
标识
DOI:10.1016/j.cej.2019.02.193
摘要

Chemical doping of graphene with heteroatoms is expected to be a promising strategy to enhance the electromagnetic wave attenuation capability, however, the intrinsic mechanism is not investigated in-depth. In this manuscript, ultra-lightweight N-doped graphene foams (ρ ≈ 10.5–16.6 mg/cm3) with high porosity and open reticular structures are prepared via a self-assembled hydrothermal reaction and a freeze-drying process. Compared with pure graphene foams, the presence of N heteroatoms helps to build open reticular walls and tailors the electrical properties, leading to strong electromagnetic wave absorption capacity and broad absorption bandwidth simultaneously, and meanwhile, the investigation of N bonding configurations illustrates that the presence of pyrrolic/pyridinic N are mainly essential for the dipolar relaxation loss whereas graphitic N is beneficial to the conduction loss. When the bulk density is 11.6 mg/cm3, the maximum reflection loss of the absorber is −53.9 dB at 3.5 mm with a low filler loading of only 5 wt%, and the absorption bandwidth exceeding −10 dB is 4.56 GHz with a thickness of 2 mm, the highly efficient electromagnetic wave absorption performance strongly originates from the enhanced dipolar/interfacial polarizations, the multiple scatterings, the microscale circular conductive structures as well as the balanced impedance match. Furthermore, this monocomponent absorber can be an optimal candidate for ultra-lightweight and high-efficiency electromagnetic wave absorber without decorating other nanomaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
64658应助你好纠结伦采纳,获得10
刚刚
xiuxiuxiuxiu完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
zn315315完成签到,获得积分10
1秒前
周舟发布了新的文献求助20
2秒前
2秒前
杉杉来了发布了新的文献求助10
2秒前
3秒前
草莓星发布了新的文献求助10
4秒前
MYFuture完成签到 ,获得积分10
4秒前
欣欣儿完成签到 ,获得积分10
4秒前
amberssy完成签到,获得积分20
4秒前
4秒前
4秒前
5秒前
活泼的觅云完成签到,获得积分10
5秒前
Amy完成签到,获得积分10
5秒前
5秒前
6秒前
Lucas应助lyx1997采纳,获得10
6秒前
6秒前
7秒前
大力怀亦发布了新的文献求助10
7秒前
yyd完成签到,获得积分10
7秒前
orixero应助ddd采纳,获得10
7秒前
浮游应助SWJ采纳,获得10
8秒前
科研通AI6应助唐九采纳,获得10
8秒前
8秒前
坚强的笑天完成签到,获得积分10
9秒前
pluto应助haha采纳,获得10
9秒前
坦率锦程发布了新的文献求助30
9秒前
华仔应助秋雨采纳,获得10
9秒前
9秒前
9秒前
AA完成签到,获得积分10
9秒前
科研通AI2S应助Voskov采纳,获得10
10秒前
pluto应助小肥要努力变肥采纳,获得10
10秒前
杜可欣完成签到,获得积分10
10秒前
10秒前
11秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239186
求助须知:如何正确求助?哪些是违规求助? 4406606
关于积分的说明 13714785
捐赠科研通 4274978
什么是DOI,文献DOI怎么找? 2345842
邀请新用户注册赠送积分活动 1342947
关于科研通互助平台的介绍 1300900