已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Occlusion Aware Facial Expression Recognition Using CNN With Attention Mechanism

人工智能 计算机科学 面部表情 面部表情识别 模式识别(心理学) 表达式(计算机科学) 面部识别系统 语音识别 机制(生物学) 计算机视觉 闭塞 医学 认识论 哲学 心脏病学 程序设计语言
作者
Yong Li,Jiabei Zeng,Shiguang Shan,Xilin Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 2439-2450 被引量:750
标识
DOI:10.1109/tip.2018.2886767
摘要

Facial expression recognition in the wild is challenging due to various unconstrained conditions. Although existing facial expression classifiers have been almost perfect on analyzing constrained frontal faces, they fail to perform well on partially occluded faces that are common in the wild. In this paper, we propose a convolution neutral network (CNN) with attention mechanism (ACNN) that can perceive the occlusion regions of the face and focus on the most discriminative un-occluded regions. ACNN is an end-to-end learning framework. It combines the multiple representations from facial regions of interest (ROIs). Each representation is weighed via a proposed gate unit that computes an adaptive weight from the region itself according to the unobstructedness and importance. Considering different RoIs, we introduce two versions of ACNN: patch-based ACNN (pACNN) and global-local-based ACNN (gACNN). pACNN only pays attention to local facial patches. gACNN integrates local representations at patch-level with global representation at image-level. The proposed ACNNs are evaluated on both real and synthetic occlusions, including a self-collected facial expression dataset with real-world occlusions, the two largest in-the-wild facial expression datasets (RAF-DB and AffectNet) and their modifications with synthesized facial occlusions. Experimental results show that ACNNs improve the recognition accuracy on both the non-occluded faces and occluded faces. Visualization results demonstrate that, compared with the CNN without Gate Unit, ACNNs are capable of shifting the attention from the occluded patches to other related but unobstructed ones. ACNNs also outperform other state-of-the-art methods on several widely used in-the-lab facial expression datasets under the cross-dataset evaluation protocol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃颗荔枝吧完成签到,获得积分10
1秒前
cy完成签到 ,获得积分10
2秒前
三愿完成签到 ,获得积分10
2秒前
等乙天发布了新的文献求助10
3秒前
壮观季节发布了新的文献求助20
4秒前
鸣蜩十三完成签到,获得积分10
4秒前
qzp完成签到 ,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
GingerF应助科研通管家采纳,获得50
7秒前
一定accept完成签到 ,获得积分10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
GingerF应助科研通管家采纳,获得50
7秒前
7秒前
明理的亦寒完成签到 ,获得积分10
8秒前
粥大大完成签到 ,获得积分10
10秒前
等乙天完成签到,获得积分10
11秒前
longquan完成签到,获得积分10
13秒前
单薄乐珍完成签到 ,获得积分0
13秒前
lzn完成签到 ,获得积分10
15秒前
15秒前
wenwj9完成签到,获得积分10
15秒前
落寞振家完成签到,获得积分20
16秒前
Bowman完成签到,获得积分10
19秒前
义气翩跹发布了新的文献求助20
20秒前
NexusExplorer应助wenwj9采纳,获得20
21秒前
wsb76完成签到 ,获得积分10
24秒前
小姚姚完成签到,获得积分10
24秒前
ZJR完成签到 ,获得积分10
26秒前
斯文败类应助涨涨涨采纳,获得10
28秒前
小潘完成签到 ,获得积分10
28秒前
Max完成签到 ,获得积分10
28秒前
32秒前
科研通AI5应助小白采纳,获得10
32秒前
空白完成签到 ,获得积分10
33秒前
等于零完成签到 ,获得积分10
34秒前
哈哈完成签到 ,获得积分10
34秒前
34秒前
王某完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5052340
求助须知:如何正确求助?哪些是违规求助? 4279425
关于积分的说明 13339408
捐赠科研通 4094840
什么是DOI,文献DOI怎么找? 2241328
邀请新用户注册赠送积分活动 1247634
关于科研通互助平台的介绍 1176798