Occlusion Aware Facial Expression Recognition Using CNN With Attention Mechanism

人工智能 计算机科学 面部表情 判别式 卷积神经网络 面部表情识别 模式识别(心理学) 表达式(计算机科学) 面部识别系统 面子(社会学概念) 计算机视觉 闭塞 心脏病学 社会学 程序设计语言 医学 社会科学
作者
Yong Li,Jiabei Zeng,Shiguang Shan,Xilin Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 2439-2450 被引量:494
标识
DOI:10.1109/tip.2018.2886767
摘要

Facial expression recognition in the wild is challenging due to various unconstrained conditions. Although existing facial expression classifiers have been almost perfect on analyzing constrained frontal faces, they fail to perform well on partially occluded faces that are common in the wild. In this paper, we propose a convolution neutral network (CNN) with attention mechanism (ACNN) that can perceive the occlusion regions of the face and focus on the most discriminative un-occluded regions. ACNN is an end-to-end learning framework. It combines the multiple representations from facial regions of interest (ROIs). Each representation is weighed via a proposed gate unit that computes an adaptive weight from the region itself according to the unobstructedness and importance. Considering different RoIs, we introduce two versions of ACNN: patch-based ACNN (pACNN) and global-local-based ACNN (gACNN). pACNN only pays attention to local facial patches. gACNN integrates local representations at patch-level with global representation at image-level. The proposed ACNNs are evaluated on both real and synthetic occlusions, including a self-collected facial expression dataset with real-world occlusions, the two largest in-the-wild facial expression datasets (RAF-DB and AffectNet) and their modifications with synthesized facial occlusions. Experimental results show that ACNNs improve the recognition accuracy on both the non-occluded faces and occluded faces. Visualization results demonstrate that, compared with the CNN without Gate Unit, ACNNs are capable of shifting the attention from the occluded patches to other related but unobstructed ones. ACNNs also outperform other state-of-the-art methods on several widely used in-the-lab facial expression datasets under the cross-dataset evaluation protocol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lezbj99发布了新的文献求助10
1秒前
处处吻完成签到 ,获得积分10
1秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
CodeCraft应助光亮的宫苴采纳,获得10
3秒前
3秒前
浪而而发布了新的文献求助10
3秒前
乐乐应助李博士采纳,获得80
3秒前
高高的冷之完成签到,获得积分10
3秒前
明理的南风完成签到,获得积分10
4秒前
123456完成签到,获得积分20
4秒前
liuting完成签到,获得积分20
5秒前
瘦瘦怜阳发布了新的文献求助10
6秒前
郭政飞发布了新的文献求助10
6秒前
123456发布了新的文献求助10
6秒前
怎么说来着完成签到,获得积分10
7秒前
田様应助化工人采纳,获得10
8秒前
铝合金男孩完成签到,获得积分10
8秒前
10秒前
酒尚温完成签到 ,获得积分10
10秒前
拥有八根情丝完成签到 ,获得积分10
11秒前
江三村完成签到 ,获得积分10
12秒前
yy完成签到 ,获得积分10
12秒前
lzz完成签到,获得积分10
12秒前
Cherish发布了新的文献求助10
13秒前
13秒前
雨晴完成签到,获得积分10
14秒前
john完成签到,获得积分10
14秒前
从容的灵凡完成签到,获得积分10
14秒前
SciGPT应助Hey采纳,获得10
15秒前
山见山发布了新的文献求助10
15秒前
一顿吃不饱完成签到,获得积分0
15秒前
WHB完成签到,获得积分10
15秒前
灰鸽舞完成签到 ,获得积分10
16秒前
16秒前
李小鑫吖完成签到,获得积分10
16秒前
研友_LMg3PZ发布了新的文献求助10
17秒前
胖小羊完成签到,获得积分10
18秒前
叙温雨完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798255
关于积分的说明 7827373
捐赠科研通 2454823
什么是DOI,文献DOI怎么找? 1306491
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565