亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Occlusion Aware Facial Expression Recognition Using CNN With Attention Mechanism

人工智能 计算机科学 面部表情 面部表情识别 模式识别(心理学) 表达式(计算机科学) 面部识别系统 语音识别 机制(生物学) 计算机视觉 闭塞 医学 认识论 哲学 心脏病学 程序设计语言
作者
Yong Li,Jiabei Zeng,Shiguang Shan,Xilin Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 2439-2450 被引量:750
标识
DOI:10.1109/tip.2018.2886767
摘要

Facial expression recognition in the wild is challenging due to various unconstrained conditions. Although existing facial expression classifiers have been almost perfect on analyzing constrained frontal faces, they fail to perform well on partially occluded faces that are common in the wild. In this paper, we propose a convolution neutral network (CNN) with attention mechanism (ACNN) that can perceive the occlusion regions of the face and focus on the most discriminative un-occluded regions. ACNN is an end-to-end learning framework. It combines the multiple representations from facial regions of interest (ROIs). Each representation is weighed via a proposed gate unit that computes an adaptive weight from the region itself according to the unobstructedness and importance. Considering different RoIs, we introduce two versions of ACNN: patch-based ACNN (pACNN) and global-local-based ACNN (gACNN). pACNN only pays attention to local facial patches. gACNN integrates local representations at patch-level with global representation at image-level. The proposed ACNNs are evaluated on both real and synthetic occlusions, including a self-collected facial expression dataset with real-world occlusions, the two largest in-the-wild facial expression datasets (RAF-DB and AffectNet) and their modifications with synthesized facial occlusions. Experimental results show that ACNNs improve the recognition accuracy on both the non-occluded faces and occluded faces. Visualization results demonstrate that, compared with the CNN without Gate Unit, ACNNs are capable of shifting the attention from the occluded patches to other related but unobstructed ones. ACNNs also outperform other state-of-the-art methods on several widely used in-the-lab facial expression datasets under the cross-dataset evaluation protocol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十三发布了新的文献求助10
2秒前
热心的豌豆完成签到 ,获得积分10
10秒前
科研通AI5应助C17采纳,获得10
13秒前
动听衬衫应助科研通管家采纳,获得10
14秒前
动听衬衫应助科研通管家采纳,获得30
14秒前
科研通AI5应助机智冰姬采纳,获得10
23秒前
十三完成签到,获得积分20
27秒前
34秒前
漫漫发布了新的文献求助10
42秒前
43秒前
小张完成签到 ,获得积分10
44秒前
45秒前
46秒前
49秒前
现代CC完成签到 ,获得积分10
51秒前
科研通AI5应助漫漫采纳,获得10
52秒前
展锋发布了新的文献求助10
53秒前
陶醉元冬完成签到,获得积分10
54秒前
bkagyin应助爱听歌凤灵采纳,获得10
54秒前
英姑应助123采纳,获得10
57秒前
斯文败类应助奥黛丽悟空采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
桐桐应助111采纳,获得10
1分钟前
1分钟前
爱听歌凤灵完成签到,获得积分10
1分钟前
今日发布了新的文献求助10
1分钟前
Lucas应助七色光采纳,获得10
1分钟前
充电宝应助彭蓬采纳,获得10
1分钟前
Splaink完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI5应助花骨头采纳,获得10
1分钟前
今日完成签到,获得积分10
2分钟前
蕊蕊应助奥黛丽悟空采纳,获得10
2分钟前
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
111发布了新的文献求助10
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220743
求助须知:如何正确求助?哪些是违规求助? 4394021
关于积分的说明 13680050
捐赠科研通 4256994
什么是DOI,文献DOI怎么找? 2335881
邀请新用户注册赠送积分活动 1333500
关于科研通互助平台的介绍 1287918