Occlusion Aware Facial Expression Recognition Using CNN With Attention Mechanism

人工智能 计算机科学 面部表情 面部表情识别 模式识别(心理学) 表达式(计算机科学) 面部识别系统 语音识别 机制(生物学) 计算机视觉 闭塞 医学 认识论 哲学 心脏病学 程序设计语言
作者
Yong Li,Jiabei Zeng,Shiguang Shan,Xilin Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 2439-2450 被引量:750
标识
DOI:10.1109/tip.2018.2886767
摘要

Facial expression recognition in the wild is challenging due to various unconstrained conditions. Although existing facial expression classifiers have been almost perfect on analyzing constrained frontal faces, they fail to perform well on partially occluded faces that are common in the wild. In this paper, we propose a convolution neutral network (CNN) with attention mechanism (ACNN) that can perceive the occlusion regions of the face and focus on the most discriminative un-occluded regions. ACNN is an end-to-end learning framework. It combines the multiple representations from facial regions of interest (ROIs). Each representation is weighed via a proposed gate unit that computes an adaptive weight from the region itself according to the unobstructedness and importance. Considering different RoIs, we introduce two versions of ACNN: patch-based ACNN (pACNN) and global-local-based ACNN (gACNN). pACNN only pays attention to local facial patches. gACNN integrates local representations at patch-level with global representation at image-level. The proposed ACNNs are evaluated on both real and synthetic occlusions, including a self-collected facial expression dataset with real-world occlusions, the two largest in-the-wild facial expression datasets (RAF-DB and AffectNet) and their modifications with synthesized facial occlusions. Experimental results show that ACNNs improve the recognition accuracy on both the non-occluded faces and occluded faces. Visualization results demonstrate that, compared with the CNN without Gate Unit, ACNNs are capable of shifting the attention from the occluded patches to other related but unobstructed ones. ACNNs also outperform other state-of-the-art methods on several widely used in-the-lab facial expression datasets under the cross-dataset evaluation protocol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
radio完成签到 ,获得积分10
1秒前
小胡同学发布了新的文献求助10
1秒前
2秒前
细腻曼冬完成签到,获得积分10
4秒前
ssssxr发布了新的文献求助10
5秒前
李健的小迷弟应助shain采纳,获得10
5秒前
qiao完成签到,获得积分10
6秒前
7秒前
元来完成签到,获得积分10
9秒前
10秒前
我就是我完成签到,获得积分10
12秒前
李健应助fangfang采纳,获得10
13秒前
五六七发布了新的文献求助10
14秒前
SciGPT应助张正采纳,获得10
14秒前
ccc6195完成签到,获得积分10
14秒前
16秒前
mgh完成签到,获得积分20
16秒前
李健的小迷弟应助维尼采纳,获得30
17秒前
小王贼棒发布了新的文献求助10
19秒前
深情安青应助雷家采纳,获得10
19秒前
19秒前
20秒前
20秒前
21秒前
张雷应助ltft采纳,获得20
22秒前
顾矜应助聪慧的怀绿采纳,获得10
22秒前
23秒前
ss完成签到 ,获得积分10
23秒前
li完成签到,获得积分10
24秒前
ccc6195发布了新的文献求助10
24秒前
g7001完成签到,获得积分10
24秒前
张正发布了新的文献求助10
24秒前
qiu完成签到,获得积分20
24秒前
mawenxing完成签到,获得积分10
24秒前
何照人应助科研通管家采纳,获得10
25秒前
完美世界应助科研通管家采纳,获得10
25秒前
科研小菜狗完成签到,获得积分10
25秒前
柯一一应助科研通管家采纳,获得10
25秒前
搜集达人应助科研通管家采纳,获得10
25秒前
Akim应助科研通管家采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164677
捐赠科研通 3247651
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498