组合数学
数学
对角线的
阿尔法(金融)
对角矩阵
学位(音乐)
基质(化学分析)
光谱半径
图形
物理
邻接矩阵
特征向量
几何学
量子力学
统计
化学
结构效度
色谱法
声学
心理测量学
作者
Dan Li,Yuanyuan Chen,Jixiang Meng
出处
期刊:Cornell University - arXiv
日期:2018-06-07
摘要
Let $G$ be a graph with adjacency matrix $A(G)$, and let $D(G)$ be the diagonal matrix of the degrees of $G$. For any real $\alpha\in[0,1]$, write $A_\alpha(G)$ for the matrix $$A_\alpha(G)=\alpha D(G)+(1-\alpha)A(G).$$ This paper presents some extremal results about the spectral radius $\rho(A_\alpha(G))$ of $A_\alpha(G)$ that generalize previous results about $\rho(A_0(G))$ and $\rho(A_{\frac{1}{2}}(G))$. In this paper, we give some results on graph perturbation for $A_\alpha$-matrix with $\alpha\in [0,1)$. As applications, we characterize all extremal trees with the maximum $A_\alpha$-spectral radius in the set of all trees with prescribed degree sequence firstly. Furthermore, we characterize the unicyclic graphs that have the largest $A_\alpha$-spectral radius for a given unicycilc degree sequence.
科研通智能强力驱动
Strongly Powered by AbleSci AI