材料科学
介孔材料
阳极
纳米线
锂(药物)
纳米技术
基质(水族馆)
电极
储能
化学工程
催化作用
物理
地质学
工程类
内分泌学
物理化学
功率(物理)
海洋学
化学
医学
量子力学
生物化学
作者
Yuanyuan Ma,Jiating He,Zongkui Kou,Abdelnaby M. Elshahawy,Yating Hu,Cao Guan,Li Xu,John Wang
标识
DOI:10.1002/admi.201800222
摘要
Abstract Self‐supported mesoporous nanowire (NW) arrays grown directly on a current‐collector substrate represent an attractive nanoarchitecture for highly active electrodes in lithium‐ion batteries (LIBs). However, few reports have addressed the concern for a rational design of such an advanced material construction, where it is still rather difficult to establish the key parameters, especially by the conventional synthesis procedure. In this work, the vertically aligned Co 3 O 4 mesoporous nanowires grown on Ni foam (denoted as CONWs/NF) are prepared after facile pyrolysis (350 °C) of 1D nanowire‐like metal–organic frameworks (MOFs). The MOF‐derived 1D mesoporous structure can provide the efficiently accessible lithium storage active sites for high capacity and the enhanced pathway for ion diffusion in the charge–discharge process. Additionally, due to the strong contact between active material and conducting substrate, such an advanced nanoarchitecture enables fast electron transport across the interfaces. Thus, when used as an anode of LIBs, the resulting CONWs/NF possess an average rechargeable capacity of ≈1609 mAh g −1 at the current density of 0.5 A g −1 , together with a good rate performance without any ancillary materials. The strategy demonstrated in the present study paves a new pathway for directly and facilely growing NWs on conducting substrates for energy storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI