Domain Adaptation with Source Selection for Motor-Imagery based BCI

计算机科学 脑-机接口 脑电图 运动表象 人工智能 模式识别(心理学) 鉴定(生物学) 适应(眼睛) 主题(文档) 机器学习 语音识别 物理 光学 精神科 图书馆学 生物 植物 心理学
作者
Eunjin Jeon,Wonjun Ko,Heung-Il Suk
标识
DOI:10.1109/iww-bci.2019.8737340
摘要

Recent successes of deep learning methods in various applications have inspired BCI researchers for their use in EEG classification. However, data insufficiency and high intra- and inter-subject variabilities hinder from taking their advantage of discovering complex patterns inherent in data, which can be potentially useful to enhance EEG classification accuracy. In this paper, we devise a novel framework of training a deep network by adapting samples of other subjects as a means of domain adaptation. Assuming that there are EEG trials of motor-imagery tasks from multiple subjects available, we first select a subject whose EEG signal characteristics are similar to the target subject based on their power spectral density in resting-state EEG signals. We then use EEG signals of both the selected subject (called a source subject) and the target subject jointly in training a deep network. Rather than training a single path network, we adopt a multi-path network architecture, where the shared bottom layers are used to discover common features for both source and target subjects, while the upper layers branch out into (1) source-target subject identification, (2) label prediction optimized for a source subject, and (3) label prediction optimized for a target subject. Based on our experimental results over the BCI Competition IV-IIa dataset, we validated the effectiveness of the proposed framework in various aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恒星七纪发布了新的文献求助10
刚刚
1秒前
所所应助李小明采纳,获得10
2秒前
puzhongjiMiQ发布了新的文献求助10
2秒前
wbh完成签到,获得积分10
2秒前
未夕晴完成签到,获得积分10
2秒前
FashionBoy应助Song采纳,获得10
2秒前
鬼笔环肽完成签到,获得积分10
2秒前
wyblobin完成签到,获得积分10
2秒前
样杨羊发布了新的文献求助10
2秒前
sll完成签到,获得积分10
2秒前
3秒前
出来玩玩完成签到,获得积分10
3秒前
kemal完成签到,获得积分10
3秒前
八万完成签到,获得积分10
3秒前
淼淼发布了新的文献求助10
4秒前
天天快乐应助丷浅碎时光采纳,获得10
4秒前
勤劳怜寒完成签到,获得积分20
4秒前
5秒前
5秒前
孟柠柠完成签到,获得积分10
5秒前
英俊的铭应助Bmyndm采纳,获得10
6秒前
激昂的幻梦完成签到,获得积分10
6秒前
6秒前
7秒前
FashionBoy应助研友_MLJWvn采纳,获得10
7秒前
wanci应助恒星七纪采纳,获得10
7秒前
嘉心糖应助恒星七纪采纳,获得30
7秒前
明理蜜蜂发布了新的文献求助80
7秒前
GYF完成签到,获得积分10
8秒前
Singularity应助ruo采纳,获得10
8秒前
wbh发布了新的文献求助10
9秒前
良辰应助company采纳,获得10
9秒前
金文发布了新的文献求助10
10秒前
飞快的盼易完成签到,获得积分10
10秒前
10秒前
10秒前
搜集达人应助瑾瑜采纳,获得10
10秒前
无语发布了新的文献求助10
11秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307944
求助须知:如何正确求助?哪些是违规求助? 2941498
关于积分的说明 8503719
捐赠科研通 2615996
什么是DOI,文献DOI怎么找? 1429333
科研通“疑难数据库(出版商)”最低求助积分说明 663724
邀请新用户注册赠送积分活动 648678