已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Convolutional Multitimescale Echo State Network

计算机科学 回声状态网络 循环神经网络 判别式 水准点(测量) 油藏计算 人工智能 卷积神经网络 时态数据库 卷积码 模式识别(心理学) 时间序列 深度学习 机器学习 数据挖掘 算法 人工神经网络 解码方法 地理 大地测量学
作者
Qianli Ma,Enhuan Chen,Zhenxi Lin,Jiangyue Yan,Zhiwen Yu,Wing W. Y. Ng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (3): 1613-1625 被引量:53
标识
DOI:10.1109/tcyb.2019.2919648
摘要

As efficient recurrent neural network (RNN) models, echo state networks (ESNs) have attracted widespread attention and been applied in many application domains in the last decade. Although they have achieved great success in modeling time series, a single ESN may have difficulty in capturing the multitimescale structures that naturally exist in temporal data. In this paper, we propose the convolutional multitimescale ESN (ConvMESN), which is a novel training-efficient model for capturing multitimescale structures and multiscale temporal dependencies of temporal data. In particular, a multitimescale memory encoder is constructed with a multireservoir structure, in which different reservoirs have recurrent connections with different skip lengths (or time spans). By collecting all past echo states in each reservoir, this multireservoir structure encodes the history of a time series as nonlinear multitimescale echo state representations (MESRs). Our visualization analysis verifies that the MESRs provide better discriminative features for time series. Finally, multiscale temporal dependencies of MESRs are learned by a convolutional layer. By leveraging the multitimescale reservoirs followed by a convolutional learner, the ConvMESN has not only efficient memory encoding ability for temporal data with multitimescale structures but also strong learning ability for complex temporal dependencies. Furthermore, the training-free reservoirs and the single convolutional layer provide high-computational efficiency for the ConvMESN to model complex temporal data. Extensive experiments on 18 multivariate time series (MTS) benchmark datasets and 3 skeleton-based action recognition datasets demonstrate that the ConvMESN captures multitimescale dynamics and outperforms existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小雨点完成签到,获得积分10
1秒前
谷秋完成签到,获得积分10
3秒前
香蕉觅云应助和谐亿先采纳,获得10
4秒前
yjwang发布了新的文献求助10
6秒前
8秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
liushikai应助科研通管家采纳,获得20
9秒前
9秒前
12秒前
斑马兽发布了新的文献求助10
13秒前
研友_ZGjaGn完成签到,获得积分10
16秒前
17秒前
wwwteng呀完成签到,获得积分10
22秒前
23秒前
六沉完成签到 ,获得积分10
25秒前
LL完成签到,获得积分10
25秒前
kawayifenm发布了新的文献求助10
28秒前
28秒前
renxiaoting发布了新的文献求助10
28秒前
31秒前
34秒前
WangJL完成签到 ,获得积分10
36秒前
斯寜应助dffgghghh采纳,获得10
38秒前
华桦子完成签到 ,获得积分10
38秒前
39秒前
LJ徽完成签到 ,获得积分10
40秒前
41秒前
Spine发布了新的文献求助10
42秒前
11发布了新的文献求助10
43秒前
科研通AI5应助kaola采纳,获得10
43秒前
老实觅松完成签到 ,获得积分10
45秒前
45秒前
46秒前
LLL发布了新的文献求助10
48秒前
DAN完成签到 ,获得积分10
48秒前
50秒前
Felix发布了新的文献求助10
50秒前
sunshine发布了新的文献求助10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770315
求助须知:如何正确求助?哪些是违规求助? 3315383
关于积分的说明 10175735
捐赠科研通 3030369
什么是DOI,文献DOI怎么找? 1662854
邀请新用户注册赠送积分活动 795203
科研通“疑难数据库(出版商)”最低求助积分说明 756612