High-Resolution Encoder–Decoder Networks for Low-Contrast Medical Image Segmentation

计算机科学 人工智能 分割 卷积神经网络 编码器 图像分割 计算机视觉 模式识别(心理学) 深度学习 图像分辨率 操作系统
作者
Sihang Zhou,Dong Nie,Ehsan Adeli,Jianping Yin,Jun Lian,Dinggang Shen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 461-475 被引量:121
标识
DOI:10.1109/tip.2019.2919937
摘要

Automatic image segmentation is an essential step for many medical image analysis applications, include computer-aided radiation therapy, disease diagnosis, and treatment effect evaluation. One of the major challenges for this task is the blurry nature of medical images (e.g., CT, MR, and microscopic images), which can often result in low-contrast and vanishing boundaries. With the recent advances in convolutional neural networks, vast improvements have been made for image segmentation, mainly based on the skip-connection-linked encoder-decoder deep architectures. However, in many applications (with adjacent targets in blurry images), these models often fail to accurately locate complex boundaries and properly segment tiny isolated parts. In this paper, we aim to provide a method for blurry medical image segmentation and argue that skip connections are not enough to help accurately locate indistinct boundaries. Accordingly, we propose a novel high-resolution multi-scale encoder-decoder network (HMEDN), in which multi-scale dense connections are introduced for the encoder-decoder structure to finely exploit comprehensive semantic information. Besides skip connections, extra deeply supervised high-resolution pathways (comprised of densely connected dilated convolutions) are integrated to collect high-resolution semantic information for accurate boundary localization. These pathways are paired with a difficulty-guided cross-entropy loss function and a contour regression task to enhance the quality of boundary detection. The extensive experiments on a pelvic CT image dataset, a multi-modal brain tumor dataset, and a cell segmentation dataset show the effectiveness of our method for 2D/3D semantic segmentation and 2D instance segmentation, respectively. Our experimental results also show that besides increasing the network complexity, raising the resolution of semantic feature maps can largely affect the overall model performance. For different tasks, finding a balance between these two factors can further improve the performance of the corresponding network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助lalala采纳,获得10
1秒前
刘亦菲完成签到,获得积分10
1秒前
135gcl发布了新的文献求助10
1秒前
gzj完成签到,获得积分10
1秒前
淡定身影完成签到,获得积分10
1秒前
2秒前
Owen应助还不如瞎写采纳,获得10
2秒前
半凡发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
石石刘完成签到 ,获得积分10
4秒前
顺利毕业完成签到,获得积分10
5秒前
端庄冷荷完成签到 ,获得积分10
5秒前
5秒前
haoliu完成签到,获得积分10
5秒前
5秒前
阳光完成签到,获得积分10
6秒前
小飞完成签到,获得积分20
7秒前
Zzz完成签到,获得积分10
7秒前
7秒前
7秒前
Akim应助TRISTE采纳,获得10
8秒前
8秒前
shentucc完成签到,获得积分20
8秒前
8秒前
9秒前
SY完成签到,获得积分10
9秒前
龙晴完成签到 ,获得积分10
10秒前
10秒前
11秒前
1234发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
所就欧克发布了新的文献求助10
12秒前
13秒前
瞳瞳爱吃巴斯克完成签到 ,获得积分10
14秒前
15秒前
月星发布了新的文献求助10
15秒前
赘婿应助赫连紫采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809