High-Resolution Encoder–Decoder Networks for Low-Contrast Medical Image Segmentation

计算机科学 人工智能 分割 卷积神经网络 编码器 图像分割 计算机视觉 模式识别(心理学) 深度学习 图像分辨率 操作系统
作者
Sihang Zhou,Dong Nie,Ehsan Adeli,Jianping Yin,Jun Lian,Dinggang Shen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 461-475 被引量:121
标识
DOI:10.1109/tip.2019.2919937
摘要

Automatic image segmentation is an essential step for many medical image analysis applications, include computer-aided radiation therapy, disease diagnosis, and treatment effect evaluation. One of the major challenges for this task is the blurry nature of medical images (e.g., CT, MR, and microscopic images), which can often result in low-contrast and vanishing boundaries. With the recent advances in convolutional neural networks, vast improvements have been made for image segmentation, mainly based on the skip-connection-linked encoder-decoder deep architectures. However, in many applications (with adjacent targets in blurry images), these models often fail to accurately locate complex boundaries and properly segment tiny isolated parts. In this paper, we aim to provide a method for blurry medical image segmentation and argue that skip connections are not enough to help accurately locate indistinct boundaries. Accordingly, we propose a novel high-resolution multi-scale encoder-decoder network (HMEDN), in which multi-scale dense connections are introduced for the encoder-decoder structure to finely exploit comprehensive semantic information. Besides skip connections, extra deeply supervised high-resolution pathways (comprised of densely connected dilated convolutions) are integrated to collect high-resolution semantic information for accurate boundary localization. These pathways are paired with a difficulty-guided cross-entropy loss function and a contour regression task to enhance the quality of boundary detection. The extensive experiments on a pelvic CT image dataset, a multi-modal brain tumor dataset, and a cell segmentation dataset show the effectiveness of our method for 2D/3D semantic segmentation and 2D instance segmentation, respectively. Our experimental results also show that besides increasing the network complexity, raising the resolution of semantic feature maps can largely affect the overall model performance. For different tasks, finding a balance between these two factors can further improve the performance of the corresponding network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ynn发布了新的文献求助50
1秒前
尚白swqd发布了新的文献求助10
2秒前
香蕉觅云应助追寻的广缘采纳,获得10
2秒前
无为发布了新的文献求助20
2秒前
3秒前
松鼠15111发布了新的文献求助30
3秒前
浮生若梦发布了新的文献求助30
3秒前
hiahiayue发布了新的文献求助10
3秒前
无奈安双完成签到,获得积分10
4秒前
Hello应助ddddd采纳,获得10
4秒前
4秒前
4秒前
ZXH完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
Lxxixixi发布了新的文献求助10
5秒前
6秒前
yu完成签到,获得积分10
6秒前
小松松完成签到,获得积分10
7秒前
7秒前
lzw123456完成签到,获得积分10
7秒前
liuhang完成签到,获得积分10
7秒前
7秒前
今天也要努力呀完成签到,获得积分10
7秒前
7秒前
lalahh发布了新的文献求助10
8秒前
8秒前
ccc发布了新的文献求助10
8秒前
嗖嗖完成签到,获得积分10
8秒前
9秒前
所所应助xu采纳,获得30
9秒前
10秒前
rabbit发布了新的文献求助10
10秒前
山复尔尔发布了新的文献求助10
10秒前
mumu发布了新的文献求助10
11秒前
11秒前
迷人如冬发布了新的文献求助10
12秒前
Lxxixixi完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192215
求助须知:如何正确求助?哪些是违规求助? 4375198
关于积分的说明 13624085
捐赠科研通 4229463
什么是DOI,文献DOI怎么找? 2319944
邀请新用户注册赠送积分活动 1318415
关于科研通互助平台的介绍 1268598