High-Resolution Encoder–Decoder Networks for Low-Contrast Medical Image Segmentation

计算机科学 人工智能 分割 卷积神经网络 编码器 图像分割 计算机视觉 模式识别(心理学) 深度学习 图像分辨率 操作系统
作者
Sihang Zhou,Dong Nie,Ehsan Adeli,Jianping Yin,Jun Lian,Dinggang Shen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 461-475 被引量:121
标识
DOI:10.1109/tip.2019.2919937
摘要

Automatic image segmentation is an essential step for many medical image analysis applications, include computer-aided radiation therapy, disease diagnosis, and treatment effect evaluation. One of the major challenges for this task is the blurry nature of medical images (e.g., CT, MR, and microscopic images), which can often result in low-contrast and vanishing boundaries. With the recent advances in convolutional neural networks, vast improvements have been made for image segmentation, mainly based on the skip-connection-linked encoder-decoder deep architectures. However, in many applications (with adjacent targets in blurry images), these models often fail to accurately locate complex boundaries and properly segment tiny isolated parts. In this paper, we aim to provide a method for blurry medical image segmentation and argue that skip connections are not enough to help accurately locate indistinct boundaries. Accordingly, we propose a novel high-resolution multi-scale encoder-decoder network (HMEDN), in which multi-scale dense connections are introduced for the encoder-decoder structure to finely exploit comprehensive semantic information. Besides skip connections, extra deeply supervised high-resolution pathways (comprised of densely connected dilated convolutions) are integrated to collect high-resolution semantic information for accurate boundary localization. These pathways are paired with a difficulty-guided cross-entropy loss function and a contour regression task to enhance the quality of boundary detection. The extensive experiments on a pelvic CT image dataset, a multi-modal brain tumor dataset, and a cell segmentation dataset show the effectiveness of our method for 2D/3D semantic segmentation and 2D instance segmentation, respectively. Our experimental results also show that besides increasing the network complexity, raising the resolution of semantic feature maps can largely affect the overall model performance. For different tasks, finding a balance between these two factors can further improve the performance of the corresponding network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
西西的瓜皮皮完成签到,获得积分20
1秒前
1秒前
善良友安完成签到,获得积分10
2秒前
研友_VZG7GZ应助Xxaaa采纳,获得10
3秒前
4秒前
4秒前
4秒前
段段完成签到,获得积分10
4秒前
Dddd发布了新的文献求助10
5秒前
hahah发布了新的文献求助10
6秒前
yep完成签到,获得积分10
6秒前
gguc发布了新的文献求助10
6秒前
大个应助yyy采纳,获得10
7秒前
你爹完成签到,获得积分10
7秒前
鳗鱼鞋垫完成签到 ,获得积分10
7秒前
dong发布了新的文献求助30
7秒前
8秒前
Lin发布了新的文献求助10
8秒前
Ll发布了新的文献求助50
8秒前
9秒前
晚风发布了新的文献求助10
9秒前
zjuroc发布了新的文献求助20
10秒前
坦率的松发布了新的文献求助10
10秒前
xiaokai完成签到,获得积分10
10秒前
10秒前
10秒前
Czy完成签到,获得积分10
10秒前
11秒前
小满完成签到,获得积分10
11秒前
文忉嫣完成签到,获得积分10
11秒前
11秒前
12秒前
落后秋柳完成签到,获得积分20
12秒前
Akim应助zz采纳,获得10
12秒前
13秒前
三九发布了新的文献求助10
14秒前
科研通AI5应助czq采纳,获得30
14秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762