High-Resolution Encoder–Decoder Networks for Low-Contrast Medical Image Segmentation

计算机科学 人工智能 分割 卷积神经网络 编码器 图像分割 计算机视觉 模式识别(心理学) 深度学习 图像分辨率 操作系统
作者
Sihang Zhou,Dong Nie,Ehsan Adeli,Jianping Yin,Jun Lian,Dinggang Shen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 461-475 被引量:121
标识
DOI:10.1109/tip.2019.2919937
摘要

Automatic image segmentation is an essential step for many medical image analysis applications, include computer-aided radiation therapy, disease diagnosis, and treatment effect evaluation. One of the major challenges for this task is the blurry nature of medical images (e.g., CT, MR, and microscopic images), which can often result in low-contrast and vanishing boundaries. With the recent advances in convolutional neural networks, vast improvements have been made for image segmentation, mainly based on the skip-connection-linked encoder-decoder deep architectures. However, in many applications (with adjacent targets in blurry images), these models often fail to accurately locate complex boundaries and properly segment tiny isolated parts. In this paper, we aim to provide a method for blurry medical image segmentation and argue that skip connections are not enough to help accurately locate indistinct boundaries. Accordingly, we propose a novel high-resolution multi-scale encoder-decoder network (HMEDN), in which multi-scale dense connections are introduced for the encoder-decoder structure to finely exploit comprehensive semantic information. Besides skip connections, extra deeply supervised high-resolution pathways (comprised of densely connected dilated convolutions) are integrated to collect high-resolution semantic information for accurate boundary localization. These pathways are paired with a difficulty-guided cross-entropy loss function and a contour regression task to enhance the quality of boundary detection. The extensive experiments on a pelvic CT image dataset, a multi-modal brain tumor dataset, and a cell segmentation dataset show the effectiveness of our method for 2D/3D semantic segmentation and 2D instance segmentation, respectively. Our experimental results also show that besides increasing the network complexity, raising the resolution of semantic feature maps can largely affect the overall model performance. For different tasks, finding a balance between these two factors can further improve the performance of the corresponding network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
若雪成依完成签到 ,获得积分10
1秒前
嘻嘻嘻完成签到,获得积分10
2秒前
wisper发布了新的文献求助10
2秒前
chai发布了新的文献求助10
2秒前
3秒前
Owen应助科研小白采纳,获得10
3秒前
懵懂的小蜜蜂完成签到,获得积分10
4秒前
free发布了新的文献求助10
5秒前
5秒前
Azhou完成签到,获得积分10
5秒前
liuhang完成签到,获得积分10
5秒前
5秒前
Xu完成签到,获得积分10
6秒前
cc发布了新的文献求助10
7秒前
8秒前
搞怪羊完成签到,获得积分20
8秒前
Ava应助sanch采纳,获得30
9秒前
调皮的发布了新的文献求助10
9秒前
D.lon完成签到,获得积分20
9秒前
jtc完成签到,获得积分10
9秒前
nan发布了新的文献求助10
10秒前
南兮发布了新的文献求助10
10秒前
fmsai完成签到,获得积分10
10秒前
11秒前
青果甜瓜完成签到,获得积分10
11秒前
D.lon发布了新的文献求助10
12秒前
wisper完成签到,获得积分20
12秒前
chai完成签到,获得积分10
13秒前
cc完成签到,获得积分10
14秒前
Sunmmon完成签到,获得积分10
14秒前
16秒前
Zbzb发布了新的文献求助10
16秒前
Orange应助wisper采纳,获得10
16秒前
和光同尘发布了新的文献求助10
18秒前
18秒前
19秒前
听闻发布了新的文献求助10
20秒前
Cxxxx完成签到 ,获得积分10
20秒前
二丫完成签到,获得积分10
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352