High-Resolution Encoder–Decoder Networks for Low-Contrast Medical Image Segmentation

计算机科学 人工智能 分割 卷积神经网络 编码器 图像分割 计算机视觉 模式识别(心理学) 深度学习 图像分辨率 操作系统
作者
Sihang Zhou,Dong Nie,Ehsan Adeli,Jianping Yin,Jun Lian,Dinggang Shen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 461-475 被引量:121
标识
DOI:10.1109/tip.2019.2919937
摘要

Automatic image segmentation is an essential step for many medical image analysis applications, include computer-aided radiation therapy, disease diagnosis, and treatment effect evaluation. One of the major challenges for this task is the blurry nature of medical images (e.g., CT, MR, and microscopic images), which can often result in low-contrast and vanishing boundaries. With the recent advances in convolutional neural networks, vast improvements have been made for image segmentation, mainly based on the skip-connection-linked encoder-decoder deep architectures. However, in many applications (with adjacent targets in blurry images), these models often fail to accurately locate complex boundaries and properly segment tiny isolated parts. In this paper, we aim to provide a method for blurry medical image segmentation and argue that skip connections are not enough to help accurately locate indistinct boundaries. Accordingly, we propose a novel high-resolution multi-scale encoder-decoder network (HMEDN), in which multi-scale dense connections are introduced for the encoder-decoder structure to finely exploit comprehensive semantic information. Besides skip connections, extra deeply supervised high-resolution pathways (comprised of densely connected dilated convolutions) are integrated to collect high-resolution semantic information for accurate boundary localization. These pathways are paired with a difficulty-guided cross-entropy loss function and a contour regression task to enhance the quality of boundary detection. The extensive experiments on a pelvic CT image dataset, a multi-modal brain tumor dataset, and a cell segmentation dataset show the effectiveness of our method for 2D/3D semantic segmentation and 2D instance segmentation, respectively. Our experimental results also show that besides increasing the network complexity, raising the resolution of semantic feature maps can largely affect the overall model performance. For different tasks, finding a balance between these two factors can further improve the performance of the corresponding network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助yi采纳,获得10
1秒前
科研通AI2S应助我们采纳,获得10
1秒前
玻璃外的世界完成签到,获得积分10
2秒前
几米完成签到 ,获得积分10
2秒前
2秒前
伊尔暗色发布了新的文献求助30
2秒前
鸢尾蓝发布了新的文献求助10
3秒前
fengbao完成签到,获得积分10
3秒前
131343发布了新的文献求助10
4秒前
陶治完成签到,获得积分10
4秒前
超人完成签到 ,获得积分10
4秒前
青易完成签到,获得积分10
5秒前
小怪发布了新的文献求助10
5秒前
5秒前
Lucas应助lcm采纳,获得10
5秒前
6秒前
张六六发布了新的文献求助10
6秒前
yi完成签到,获得积分10
6秒前
一只胖猫猫完成签到,获得积分10
6秒前
7秒前
7秒前
天天快乐应助蓝色条纹衫采纳,获得10
7秒前
what发布了新的文献求助10
8秒前
科目三应助jjjj采纳,获得10
8秒前
救驾来迟完成签到,获得积分10
9秒前
sll应助帅帅中带点小坏采纳,获得10
10秒前
科研通AI2S应助知之是知之采纳,获得10
10秒前
10秒前
包听枫完成签到,获得积分20
11秒前
12秒前
小怪完成签到,获得积分10
12秒前
12秒前
受伤雁荷发布了新的文献求助10
12秒前
13秒前
脑洞疼应助早川采纳,获得10
13秒前
14秒前
笑靥完成签到,获得积分10
14秒前
14秒前
星辰大海应助zzzzzzzz采纳,获得10
14秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262227
求助须知:如何正确求助?哪些是违规求助? 2902902
关于积分的说明 8323113
捐赠科研通 2572880
什么是DOI,文献DOI怎么找? 1397940
科研通“疑难数据库(出版商)”最低求助积分说明 653941
邀请新用户注册赠送积分活动 632516