Correlations between Apparent Diffusion Coefficient and Gleason Score in Prostate Cancer: A Systematic Review

有效扩散系数 医学 前列腺癌 肿瘤科 系统回顾 扩散 癌症 梅德林 内科学 磁共振成像 放射科 政治学 热力学 物理 法学
作者
Alexey Surov,Hans‐Jonas Meyer,Andreas Wienke
出处
期刊:European Urology Oncology [Elsevier]
卷期号:3 (4): 489-497 被引量:47
标识
DOI:10.1016/j.euo.2018.12.006
摘要

Reported data regarding the associations between apparent diffusion coefficient (ADC) of diffusion-weighted imaging (DWI) and Gleason score in prostate cancer (PC) are inconsistent. The aim of the present systematic review was to analyze relationships between ADC and Gleason score in PC. MEDLINE library, SCOPUS, and EMBASE databases were screened for relationships between ADC and Gleason score in PC up to April 2018. Overall, 39 studies with 2457 patients were identified. Data on the following parameters were extracted from the literature: number of patients, cancer localization, and correlation coefficients between ADC and Gleason score. Associations between ADC and Gleason score were analyzed by the Spearman's correlation coefficient. In overall sample, the pooled correlation coefficient between ADC and Gleason score was −0.45 (95% confidence interval [CI] = [−0.50; −0.40]). In PC in the transitional zone, the pooled correlation coefficient was −0.22 (95% CI = [−0.47; 0.03]). In PC in the peripheral zone, the pooled correlation coefficient was −0.48 (95% CI = [−0.54; −0.42]). In PC located in the peripheral zone, ADC correlated moderately with Gleason score. In PC located in the transitional zone, ADC correlated weakly with Gleason score. We reviewed studies using apparent diffusion coefficient for the prediction of Gleason score in prostate cancer patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIUUU完成签到,获得积分10
刚刚
chromium22发布了新的文献求助10
刚刚
蓝桉完成签到 ,获得积分10
1秒前
淡定雅山发布了新的文献求助10
1秒前
dake完成签到,获得积分10
1秒前
yx完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
老迟到的友菱完成签到,获得积分10
2秒前
wydspn完成签到,获得积分10
2秒前
xiaofeifantasy完成签到,获得积分10
2秒前
闪闪新梅完成签到,获得积分10
3秒前
循环发布了新的文献求助10
3秒前
David发布了新的文献求助30
3秒前
livra1058完成签到,获得积分10
3秒前
欢呼问旋完成签到,获得积分10
4秒前
husiqi_547完成签到,获得积分10
4秒前
开心涛完成签到,获得积分10
6秒前
空山完成签到,获得积分10
6秒前
livra1058发布了新的文献求助10
7秒前
讨厌所有人完成签到,获得积分10
9秒前
谨慎青枫完成签到 ,获得积分10
9秒前
贪玩亦云完成签到,获得积分10
9秒前
大方的书雁完成签到,获得积分10
9秒前
10秒前
10秒前
进击的小胳膊完成签到,获得积分10
10秒前
10秒前
lx完成签到,获得积分10
10秒前
科研通AI6应助愉快的白桃采纳,获得10
10秒前
nkuhao完成签到,获得积分10
10秒前
独特的秋完成签到,获得积分10
11秒前
江南逢李龟年完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
谨慎元蝶完成签到,获得积分10
12秒前
你好完成签到,获得积分10
12秒前
12秒前
冷静傲丝完成签到 ,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664885
求助须知:如何正确求助?哪些是违规求助? 4872325
关于积分的说明 15109450
捐赠科研通 4823740
什么是DOI,文献DOI怎么找? 2582524
邀请新用户注册赠送积分活动 1536489
关于科研通互助平台的介绍 1495074