亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intracranial Vessel Wall Segmentation Using Convolutional Neural Networks

分割 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 计算机视觉 图像分割 人工神经网络
作者
Feng Shi,Qi Yang,Xiuhai Guo,Touseef Ahmad Qureshi,Zixiao Tian,Huijuan Miao,Damini Dey,Debiao Li,Zhaoyang Fan
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:66 (10): 2840-2847 被引量:43
标识
DOI:10.1109/tbme.2019.2896972
摘要

Objective: To develop an automated vessel wall segmentation method using convolutional neural networks to facilitate the quantification on magnetic resonance (MR) vessel wall images of patients with intracranial atherosclerotic disease (ICAD). Methods: Vessel wall images of 56 subjects were acquired with our recently developed whole-brain three-dimensional (3-D) MR vessel wall imaging (VWI) technique. An intracranial vessel analysis (IVA) framework was presented to extract, straighten, and resample the interested vessel segment into 2-D slices. A U-net-like fully convolutional networks (FCN) method was proposed for automated vessel wall segmentation by hierarchical extraction of low- and high-order convolutional features. Results: The network was trained and validated on 1160 slices and tested on 545 slices. The proposed segmentation method demonstrated satisfactory agreement with manual segmentations with Dice coefficient of 0.89 for the lumen and 0.77 for the vessel wall. The method was further applied to a clinical study of additional 12 symptomatic and 12 asymptomatic patients with >50% ICAD stenosis at the middle cerebral artery (MCA). Normalized wall index at the focal MCA ICAD lesions was found significantly larger in symptomatic patients compared to asymptomatic patients. Conclusion: We have presented an automated vessel wall segmentation method based on FCN as well as the IVA framework for 3-D intracranial MR VWI. Significance: This approach would make large-scale quantitative plaque analysis more realistic and promote the adoption of MR VWI in ICAD management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈开开心心完成签到,获得积分10
1秒前
5秒前
CipherSage应助VV2001采纳,获得10
7秒前
flyinthesky完成签到,获得积分10
7秒前
daidai完成签到,获得积分10
10秒前
20秒前
世良发布了新的文献求助10
23秒前
斯文败类应助科研通管家采纳,获得10
26秒前
归尘应助科研通管家采纳,获得10
26秒前
归尘应助科研通管家采纳,获得10
26秒前
归尘应助科研通管家采纳,获得10
26秒前
归尘应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
归尘应助科研通管家采纳,获得10
26秒前
归尘应助科研通管家采纳,获得10
27秒前
归尘应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
ceeray23应助科研通管家采纳,获得10
27秒前
ceeray23应助科研通管家采纳,获得10
27秒前
ceeray23应助科研通管家采纳,获得10
27秒前
28秒前
张晓祁完成签到,获得积分10
28秒前
优美的小笨蛋应助sunaijia采纳,获得10
33秒前
桐桐应助世良采纳,获得10
34秒前
艾米发布了新的文献求助10
37秒前
yueying完成签到,获得积分10
39秒前
今后应助体贴花卷采纳,获得10
42秒前
44秒前
MchemG应助chen采纳,获得10
44秒前
艾米完成签到,获得积分10
54秒前
1分钟前
1分钟前
体贴花卷发布了新的文献求助10
1分钟前
科研通AI6应助体贴花卷采纳,获得10
1分钟前
尼古拉斯铁柱完成签到 ,获得积分10
1分钟前
1分钟前
hxh完成签到,获得积分10
1分钟前
1分钟前
世良发布了新的文献求助10
1分钟前
pegasus0802完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650806
求助须知:如何正确求助?哪些是违规求助? 4781743
关于积分的说明 15052599
捐赠科研通 4809617
什么是DOI,文献DOI怎么找? 2572419
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487399