Intracranial Vessel Wall Segmentation Using Convolutional Neural Networks

分割 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 计算机视觉 图像分割 人工神经网络
作者
Feng Shi,Qi Yang,Xiuhai Guo,Touseef Ahmad Qureshi,Zixiao Tian,Huijuan Miao,Damini Dey,Debiao Li,Zhaoyang Fan
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:66 (10): 2840-2847 被引量:43
标识
DOI:10.1109/tbme.2019.2896972
摘要

Objective: To develop an automated vessel wall segmentation method using convolutional neural networks to facilitate the quantification on magnetic resonance (MR) vessel wall images of patients with intracranial atherosclerotic disease (ICAD). Methods: Vessel wall images of 56 subjects were acquired with our recently developed whole-brain three-dimensional (3-D) MR vessel wall imaging (VWI) technique. An intracranial vessel analysis (IVA) framework was presented to extract, straighten, and resample the interested vessel segment into 2-D slices. A U-net-like fully convolutional networks (FCN) method was proposed for automated vessel wall segmentation by hierarchical extraction of low- and high-order convolutional features. Results: The network was trained and validated on 1160 slices and tested on 545 slices. The proposed segmentation method demonstrated satisfactory agreement with manual segmentations with Dice coefficient of 0.89 for the lumen and 0.77 for the vessel wall. The method was further applied to a clinical study of additional 12 symptomatic and 12 asymptomatic patients with >50% ICAD stenosis at the middle cerebral artery (MCA). Normalized wall index at the focal MCA ICAD lesions was found significantly larger in symptomatic patients compared to asymptomatic patients. Conclusion: We have presented an automated vessel wall segmentation method based on FCN as well as the IVA framework for 3-D intracranial MR VWI. Significance: This approach would make large-scale quantitative plaque analysis more realistic and promote the adoption of MR VWI in ICAD management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
成小调完成签到,获得积分10
刚刚
文献小聂发布了新的文献求助10
刚刚
刚刚
2秒前
酷波er应助genius_yue采纳,获得10
2秒前
水123发布了新的文献求助10
3秒前
花凉完成签到,获得积分10
3秒前
5秒前
花凉发布了新的文献求助10
5秒前
6秒前
6秒前
My完成签到,获得积分10
6秒前
成小调发布了新的文献求助10
6秒前
小武wwwww完成签到 ,获得积分10
7秒前
iOhyeye23完成签到 ,获得积分10
7秒前
田様应助micaixing2006采纳,获得10
7秒前
小马甲应助fafa采纳,获得10
8秒前
桐桐应助标致乐双采纳,获得10
8秒前
Yancy完成签到,获得积分10
9秒前
QGG发布了新的文献求助10
10秒前
斯文败类应助sillyforce采纳,获得10
10秒前
12秒前
zyx发布了新的文献求助10
13秒前
purple发布了新的文献求助10
13秒前
ye完成签到,获得积分20
15秒前
geqian发布了新的文献求助10
17秒前
17秒前
YHY完成签到,获得积分10
17秒前
17秒前
19秒前
清秀大方嘤嘤猴完成签到,获得积分10
19秒前
小米粥完成签到,获得积分10
19秒前
Xiaoy完成签到,获得积分20
20秒前
20秒前
wmq完成签到,获得积分20
20秒前
20秒前
21秒前
panda_123发布了新的文献求助10
22秒前
结果诠释过往完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601254
求助须知:如何正确求助?哪些是违规求助? 4686675
关于积分的说明 14845664
捐赠科研通 4680054
什么是DOI,文献DOI怎么找? 2539261
邀请新用户注册赠送积分活动 1506128
关于科研通互助平台的介绍 1471283