Intracranial Vessel Wall Segmentation Using Convolutional Neural Networks

分割 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 计算机视觉 图像分割 人工神经网络
作者
Feng Shi,Qi Yang,Xiuhai Guo,Touseef Ahmad Qureshi,Zixiao Tian,Huijuan Miao,Damini Dey,Debiao Li,Zhaoyang Fan
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:66 (10): 2840-2847 被引量:43
标识
DOI:10.1109/tbme.2019.2896972
摘要

Objective: To develop an automated vessel wall segmentation method using convolutional neural networks to facilitate the quantification on magnetic resonance (MR) vessel wall images of patients with intracranial atherosclerotic disease (ICAD). Methods: Vessel wall images of 56 subjects were acquired with our recently developed whole-brain three-dimensional (3-D) MR vessel wall imaging (VWI) technique. An intracranial vessel analysis (IVA) framework was presented to extract, straighten, and resample the interested vessel segment into 2-D slices. A U-net-like fully convolutional networks (FCN) method was proposed for automated vessel wall segmentation by hierarchical extraction of low- and high-order convolutional features. Results: The network was trained and validated on 1160 slices and tested on 545 slices. The proposed segmentation method demonstrated satisfactory agreement with manual segmentations with Dice coefficient of 0.89 for the lumen and 0.77 for the vessel wall. The method was further applied to a clinical study of additional 12 symptomatic and 12 asymptomatic patients with >50% ICAD stenosis at the middle cerebral artery (MCA). Normalized wall index at the focal MCA ICAD lesions was found significantly larger in symptomatic patients compared to asymptomatic patients. Conclusion: We have presented an automated vessel wall segmentation method based on FCN as well as the IVA framework for 3-D intracranial MR VWI. Significance: This approach would make large-scale quantitative plaque analysis more realistic and promote the adoption of MR VWI in ICAD management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助迷路中恶111采纳,获得10
刚刚
刚刚
须尽欢发布了新的文献求助10
刚刚
1秒前
1秒前
lly完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
rui完成签到,获得积分10
2秒前
2秒前
科研通AI6应助优秀的佳儿采纳,获得10
2秒前
xu应助mildjorker采纳,获得10
3秒前
Hyyy发布了新的文献求助30
3秒前
ElviraHuang完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助洪亮采纳,获得10
4秒前
luo完成签到,获得积分10
5秒前
lili发布了新的文献求助10
6秒前
6秒前
大力完成签到,获得积分10
7秒前
腼腆的晟睿完成签到,获得积分10
7秒前
7秒前
淡淡碧玉完成签到,获得积分10
8秒前
8秒前
8秒前
转转王转转完成签到,获得积分20
9秒前
mmnn完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
眼睛大的冰岚完成签到,获得积分10
10秒前
神说要有光完成签到,获得积分10
11秒前
充电宝应助11111采纳,获得30
11秒前
xxd发布了新的文献求助10
12秒前
12秒前
wyitong2024发布了新的文献求助10
12秒前
Jasper应助han采纳,获得10
12秒前
深情安青应助Accpted河豚采纳,获得10
13秒前
13秒前
agnes完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559