清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Intracranial Vessel Wall Segmentation Using Convolutional Neural Networks

分割 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 计算机视觉 图像分割 人工神经网络
作者
Feng Shi,Qi Yang,Xiuhai Guo,Touseef Ahmad Qureshi,Zixiao Tian,Huijuan Miao,Damini Dey,Debiao Li,Zhaoyang Fan
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:66 (10): 2840-2847 被引量:43
标识
DOI:10.1109/tbme.2019.2896972
摘要

Objective: To develop an automated vessel wall segmentation method using convolutional neural networks to facilitate the quantification on magnetic resonance (MR) vessel wall images of patients with intracranial atherosclerotic disease (ICAD). Methods: Vessel wall images of 56 subjects were acquired with our recently developed whole-brain three-dimensional (3-D) MR vessel wall imaging (VWI) technique. An intracranial vessel analysis (IVA) framework was presented to extract, straighten, and resample the interested vessel segment into 2-D slices. A U-net-like fully convolutional networks (FCN) method was proposed for automated vessel wall segmentation by hierarchical extraction of low- and high-order convolutional features. Results: The network was trained and validated on 1160 slices and tested on 545 slices. The proposed segmentation method demonstrated satisfactory agreement with manual segmentations with Dice coefficient of 0.89 for the lumen and 0.77 for the vessel wall. The method was further applied to a clinical study of additional 12 symptomatic and 12 asymptomatic patients with >50% ICAD stenosis at the middle cerebral artery (MCA). Normalized wall index at the focal MCA ICAD lesions was found significantly larger in symptomatic patients compared to asymptomatic patients. Conclusion: We have presented an automated vessel wall segmentation method based on FCN as well as the IVA framework for 3-D intracranial MR VWI. Significance: This approach would make large-scale quantitative plaque analysis more realistic and promote the adoption of MR VWI in ICAD management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
禾页完成签到 ,获得积分10
9秒前
kdjm688完成签到,获得积分10
30秒前
淡淡醉波wuliao完成签到 ,获得积分10
1分钟前
随心所欲完成签到 ,获得积分10
1分钟前
zhangshenrong完成签到 ,获得积分10
1分钟前
自然亦凝完成签到,获得积分10
1分钟前
1分钟前
喻初原完成签到 ,获得积分10
2分钟前
现实的俊驰完成签到 ,获得积分10
2分钟前
2分钟前
汉堡包应助七安得安采纳,获得10
2分钟前
3分钟前
七安得安发布了新的文献求助10
3分钟前
yipmyonphu完成签到,获得积分10
3分钟前
Benhnhk21完成签到,获得积分10
3分钟前
蔓越莓麻薯完成签到 ,获得积分10
3分钟前
Vintoe完成签到 ,获得积分10
3分钟前
linkman发布了新的文献求助10
3分钟前
4分钟前
linkman发布了新的文献求助10
4分钟前
4分钟前
jjj完成签到,获得积分10
4分钟前
yiyixt完成签到 ,获得积分10
4分钟前
方白秋完成签到,获得积分0
4分钟前
原子超人完成签到,获得积分10
5分钟前
hehe完成签到,获得积分10
5分钟前
Jasper应助joysa采纳,获得10
5分钟前
Owen应助科研通管家采纳,获得10
6分钟前
6分钟前
HZ发布了新的文献求助10
6分钟前
6分钟前
叶千山完成签到 ,获得积分10
6分钟前
joysa发布了新的文献求助10
6分钟前
HZ完成签到,获得积分20
6分钟前
量子星尘发布了新的文献求助10
8分钟前
Criminology34应助阿泽采纳,获得10
8分钟前
QQWRV发布了新的文献求助30
8分钟前
ZaZa完成签到,获得积分10
8分钟前
8分钟前
pengpengyin发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644940
求助须知:如何正确求助?哪些是违规求助? 4766456
关于积分的说明 15025933
捐赠科研通 4803292
什么是DOI,文献DOI怎么找? 2568166
邀请新用户注册赠送积分活动 1525618
关于科研通互助平台的介绍 1485156