Intracranial Vessel Wall Segmentation Using Convolutional Neural Networks

分割 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 计算机视觉 图像分割 人工神经网络
作者
Feng Shi,Qi Yang,Xiuhai Guo,Touseef Ahmad Qureshi,Zixiao Tian,Huijuan Miao,Damini Dey,Debiao Li,Zhaoyang Fan
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:66 (10): 2840-2847 被引量:43
标识
DOI:10.1109/tbme.2019.2896972
摘要

Objective: To develop an automated vessel wall segmentation method using convolutional neural networks to facilitate the quantification on magnetic resonance (MR) vessel wall images of patients with intracranial atherosclerotic disease (ICAD). Methods: Vessel wall images of 56 subjects were acquired with our recently developed whole-brain three-dimensional (3-D) MR vessel wall imaging (VWI) technique. An intracranial vessel analysis (IVA) framework was presented to extract, straighten, and resample the interested vessel segment into 2-D slices. A U-net-like fully convolutional networks (FCN) method was proposed for automated vessel wall segmentation by hierarchical extraction of low- and high-order convolutional features. Results: The network was trained and validated on 1160 slices and tested on 545 slices. The proposed segmentation method demonstrated satisfactory agreement with manual segmentations with Dice coefficient of 0.89 for the lumen and 0.77 for the vessel wall. The method was further applied to a clinical study of additional 12 symptomatic and 12 asymptomatic patients with >50% ICAD stenosis at the middle cerebral artery (MCA). Normalized wall index at the focal MCA ICAD lesions was found significantly larger in symptomatic patients compared to asymptomatic patients. Conclusion: We have presented an automated vessel wall segmentation method based on FCN as well as the IVA framework for 3-D intracranial MR VWI. Significance: This approach would make large-scale quantitative plaque analysis more realistic and promote the adoption of MR VWI in ICAD management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭琳发布了新的文献求助10
1秒前
1秒前
十月完成签到,获得积分10
1秒前
绿蚁新醅酒呀完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
怕黑的樱完成签到 ,获得积分10
2秒前
strawberry完成签到,获得积分10
2秒前
liang发布了新的文献求助10
2秒前
popo发布了新的文献求助10
3秒前
3秒前
4秒前
将将将将发布了新的文献求助10
4秒前
5秒前
阔达板栗发布了新的文献求助10
5秒前
科研孙完成签到,获得积分10
5秒前
彼岸完成签到,获得积分10
5秒前
SMPs完成签到,获得积分10
5秒前
April完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
ZF完成签到,获得积分20
8秒前
可爱的函函应助swsx1317采纳,获得10
8秒前
怕孤独的海瑶完成签到,获得积分10
9秒前
光而不耀发布了新的文献求助10
9秒前
paff发布了新的文献求助20
10秒前
橘子发布了新的文献求助10
11秒前
LLL发布了新的文献求助10
11秒前
小马甲应助Sledge采纳,获得10
11秒前
吴洲凤发布了新的文献求助10
11秒前
11秒前
11秒前
yuan发布了新的文献求助20
12秒前
大q完成签到,获得积分10
12秒前
超超~给超超~的求助进行了留言
12秒前
魁梧的文轩完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613029
求助须知:如何正确求助?哪些是违规求助? 4698296
关于积分的说明 14897022
捐赠科研通 4734847
什么是DOI,文献DOI怎么找? 2546821
邀请新用户注册赠送积分活动 1510838
关于科研通互助平台的介绍 1473494