已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intracranial Vessel Wall Segmentation Using Convolutional Neural Networks

分割 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 计算机视觉 图像分割 人工神经网络
作者
Feng Shi,Qi Yang,Xiuhai Guo,Touseef Ahmad Qureshi,Zixiao Tian,Huijuan Miao,Damini Dey,Debiao Li,Zhaoyang Fan
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:66 (10): 2840-2847 被引量:43
标识
DOI:10.1109/tbme.2019.2896972
摘要

Objective: To develop an automated vessel wall segmentation method using convolutional neural networks to facilitate the quantification on magnetic resonance (MR) vessel wall images of patients with intracranial atherosclerotic disease (ICAD). Methods: Vessel wall images of 56 subjects were acquired with our recently developed whole-brain three-dimensional (3-D) MR vessel wall imaging (VWI) technique. An intracranial vessel analysis (IVA) framework was presented to extract, straighten, and resample the interested vessel segment into 2-D slices. A U-net-like fully convolutional networks (FCN) method was proposed for automated vessel wall segmentation by hierarchical extraction of low- and high-order convolutional features. Results: The network was trained and validated on 1160 slices and tested on 545 slices. The proposed segmentation method demonstrated satisfactory agreement with manual segmentations with Dice coefficient of 0.89 for the lumen and 0.77 for the vessel wall. The method was further applied to a clinical study of additional 12 symptomatic and 12 asymptomatic patients with >50% ICAD stenosis at the middle cerebral artery (MCA). Normalized wall index at the focal MCA ICAD lesions was found significantly larger in symptomatic patients compared to asymptomatic patients. Conclusion: We have presented an automated vessel wall segmentation method based on FCN as well as the IVA framework for 3-D intracranial MR VWI. Significance: This approach would make large-scale quantitative plaque analysis more realistic and promote the adoption of MR VWI in ICAD management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗨Honey完成签到 ,获得积分10
1秒前
2秒前
田田田chong完成签到,获得积分10
2秒前
研友_qZ6V1Z完成签到,获得积分10
4秒前
ACCEPT完成签到 ,获得积分10
4秒前
5秒前
5秒前
芒果完成签到 ,获得积分10
7秒前
流萤发布了新的文献求助10
8秒前
涵涵涵hh完成签到 ,获得积分10
11秒前
11秒前
闪闪的梦柏完成签到 ,获得积分10
12秒前
meiqi完成签到 ,获得积分10
12秒前
烟花应助耍酷罡采纳,获得10
12秒前
超级翰完成签到 ,获得积分10
13秒前
嘿嘿应助梓念采纳,获得10
13秒前
嘿嘿应助梓念采纳,获得10
13秒前
龙骑士25完成签到 ,获得积分10
14秒前
细心的如天完成签到 ,获得积分10
14秒前
jzhou65发布了新的文献求助10
15秒前
流萤完成签到,获得积分10
15秒前
16秒前
SciGPT应助Jinyang采纳,获得10
18秒前
蟒玉朝天完成签到 ,获得积分10
19秒前
mole发布了新的文献求助10
20秒前
宝宝面条完成签到 ,获得积分10
23秒前
乐乐应助田田田chong采纳,获得10
24秒前
tejing1158完成签到 ,获得积分10
28秒前
32秒前
干净思远完成签到,获得积分10
33秒前
嘿嘿应助Whr采纳,获得10
34秒前
爆米花应助ni采纳,获得10
34秒前
zf完成签到 ,获得积分20
36秒前
ccm应助科研通管家采纳,获得30
36秒前
ccm应助科研通管家采纳,获得10
36秒前
酷波er应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
可爱的函函应助可靠如风采纳,获得10
36秒前
Jinyang发布了新的文献求助10
36秒前
小熊天天学习完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573165
求助须知:如何正确求助?哪些是违规求助? 4659310
关于积分的说明 14724324
捐赠科研通 4599135
什么是DOI,文献DOI怎么找? 2524124
邀请新用户注册赠送积分活动 1494675
关于科研通互助平台的介绍 1464693