Intracranial Vessel Wall Segmentation Using Convolutional Neural Networks

分割 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 计算机视觉 图像分割 人工神经网络
作者
Feng Shi,Qi Yang,Xiuhai Guo,Touseef Ahmad Qureshi,Zixiao Tian,Huijuan Miao,Damini Dey,Debiao Li,Zhaoyang Fan
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:66 (10): 2840-2847 被引量:43
标识
DOI:10.1109/tbme.2019.2896972
摘要

Objective: To develop an automated vessel wall segmentation method using convolutional neural networks to facilitate the quantification on magnetic resonance (MR) vessel wall images of patients with intracranial atherosclerotic disease (ICAD). Methods: Vessel wall images of 56 subjects were acquired with our recently developed whole-brain three-dimensional (3-D) MR vessel wall imaging (VWI) technique. An intracranial vessel analysis (IVA) framework was presented to extract, straighten, and resample the interested vessel segment into 2-D slices. A U-net-like fully convolutional networks (FCN) method was proposed for automated vessel wall segmentation by hierarchical extraction of low- and high-order convolutional features. Results: The network was trained and validated on 1160 slices and tested on 545 slices. The proposed segmentation method demonstrated satisfactory agreement with manual segmentations with Dice coefficient of 0.89 for the lumen and 0.77 for the vessel wall. The method was further applied to a clinical study of additional 12 symptomatic and 12 asymptomatic patients with >50% ICAD stenosis at the middle cerebral artery (MCA). Normalized wall index at the focal MCA ICAD lesions was found significantly larger in symptomatic patients compared to asymptomatic patients. Conclusion: We have presented an automated vessel wall segmentation method based on FCN as well as the IVA framework for 3-D intracranial MR VWI. Significance: This approach would make large-scale quantitative plaque analysis more realistic and promote the adoption of MR VWI in ICAD management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
走进你的梦完成签到 ,获得积分10
1秒前
1秒前
顺心醉柳完成签到 ,获得积分10
2秒前
小熊完成签到,获得积分10
2秒前
3秒前
赵敏发布了新的文献求助20
3秒前
默己完成签到 ,获得积分10
5秒前
orixero应助努力飞的麻雀采纳,获得10
5秒前
科研老大妈完成签到 ,获得积分10
6秒前
研友_VZG7GZ应助easymoney采纳,获得10
7秒前
zhonglv7应助xuan采纳,获得10
7秒前
水水完成签到,获得积分10
7秒前
热情的乐荷完成签到,获得积分10
7秒前
微微发布了新的文献求助10
7秒前
千里江山一只蝇完成签到,获得积分10
7秒前
健壮的蘑菇完成签到,获得积分10
8秒前
舍瓦完成签到,获得积分10
9秒前
夏老师完成签到,获得积分10
9秒前
Monica发布了新的文献求助10
10秒前
11秒前
11秒前
lin完成签到,获得积分10
12秒前
善学以致用应助孤独的匕采纳,获得10
12秒前
隐形曼青应助边疆采纳,获得10
12秒前
吕吕完成签到,获得积分10
13秒前
13秒前
852应助健壮的蘑菇采纳,获得10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
yan完成签到,获得积分10
14秒前
15秒前
迷人冥完成签到 ,获得积分10
16秒前
夏老师发布了新的文献求助10
16秒前
16秒前
科研通AI6应助xuan采纳,获得10
17秒前
HBin完成签到,获得积分10
17秒前
18秒前
yan发布了新的文献求助10
19秒前
meteor完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646612
求助须知:如何正确求助?哪些是违规求助? 4771918
关于积分的说明 15035835
捐赠科研通 4805361
什么是DOI,文献DOI怎么找? 2569639
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485860