Intracranial Vessel Wall Segmentation Using Convolutional Neural Networks

分割 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 计算机视觉 图像分割 人工神经网络
作者
Feng Shi,Qi Yang,Xiuhai Guo,Touseef Ahmad Qureshi,Zixiao Tian,Huijuan Miao,Damini Dey,Debiao Li,Zhaoyang Fan
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:66 (10): 2840-2847 被引量:43
标识
DOI:10.1109/tbme.2019.2896972
摘要

Objective: To develop an automated vessel wall segmentation method using convolutional neural networks to facilitate the quantification on magnetic resonance (MR) vessel wall images of patients with intracranial atherosclerotic disease (ICAD). Methods: Vessel wall images of 56 subjects were acquired with our recently developed whole-brain three-dimensional (3-D) MR vessel wall imaging (VWI) technique. An intracranial vessel analysis (IVA) framework was presented to extract, straighten, and resample the interested vessel segment into 2-D slices. A U-net-like fully convolutional networks (FCN) method was proposed for automated vessel wall segmentation by hierarchical extraction of low- and high-order convolutional features. Results: The network was trained and validated on 1160 slices and tested on 545 slices. The proposed segmentation method demonstrated satisfactory agreement with manual segmentations with Dice coefficient of 0.89 for the lumen and 0.77 for the vessel wall. The method was further applied to a clinical study of additional 12 symptomatic and 12 asymptomatic patients with >50% ICAD stenosis at the middle cerebral artery (MCA). Normalized wall index at the focal MCA ICAD lesions was found significantly larger in symptomatic patients compared to asymptomatic patients. Conclusion: We have presented an automated vessel wall segmentation method based on FCN as well as the IVA framework for 3-D intracranial MR VWI. Significance: This approach would make large-scale quantitative plaque analysis more realistic and promote the adoption of MR VWI in ICAD management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇哦发布了新的文献求助10
刚刚
刚刚
1秒前
xzyin完成签到,获得积分10
1秒前
summer发布了新的文献求助10
1秒前
挽月白完成签到,获得积分10
1秒前
爆米花应助酷酷学采纳,获得10
1秒前
乐鱼完成签到,获得积分10
1秒前
哈哈哈完成签到,获得积分10
2秒前
charles发布了新的文献求助20
2秒前
Rondab应助hahajiang采纳,获得30
2秒前
2秒前
3秒前
3秒前
苹果发布了新的文献求助10
4秒前
野原新之助完成签到,获得积分10
4秒前
hkxfg完成签到,获得积分10
4秒前
科研通AI2S应助hooo采纳,获得10
5秒前
叶液完成签到,获得积分10
5秒前
CipherSage应助宋宋采纳,获得10
5秒前
宋嘉新发布了新的文献求助10
5秒前
董浩楠发布了新的文献求助10
5秒前
nkuwangkai完成签到,获得积分10
5秒前
寒hep完成签到,获得积分10
6秒前
震震完成签到,获得积分10
6秒前
6秒前
6秒前
无情白羊发布了新的文献求助10
6秒前
李甄好完成签到,获得积分10
6秒前
秋qiu完成签到,获得积分10
7秒前
mumufan完成签到,获得积分10
8秒前
哇哦完成签到,获得积分10
8秒前
太平村完成签到,获得积分10
8秒前
善良的过客完成签到,获得积分10
8秒前
CipherSage应助笑点低的不采纳,获得10
8秒前
朱之欣发布了新的文献求助50
9秒前
文艺香菱完成签到,获得积分10
9秒前
summer完成签到,获得积分10
9秒前
9秒前
震震发布了新的文献求助10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582