Intracranial Vessel Wall Segmentation Using Convolutional Neural Networks

国际民航组织 分割 卷积神经网络 磁共振成像 管腔(解剖学) 人工智能 计算机科学 狭窄 图像分割 放射科 医学 外科 生物化学 基因 化学
作者
Feng Shi,Qi Yang,Xin Guo,Touseef Ahmad Qureshi,Zixiao Tian,Huijuan Miao,Damini Dey,Debiao Li,Zhaoyang Fan
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:66 (10): 2840-2847 被引量:36
标识
DOI:10.1109/tbme.2019.2896972
摘要

Objective: To develop an automated vessel wall segmentation method using convolutional neural networks to facilitate the quantification on magnetic resonance (MR) vessel wall images of patients with intracranial atherosclerotic disease (ICAD). Methods: Vessel wall images of 56 subjects were acquired with our recently developed whole-brain three-dimensional (3-D) MR vessel wall imaging (VWI) technique. An intracranial vessel analysis (IVA) framework was presented to extract, straighten, and resample the interested vessel segment into 2-D slices. A U-net-like fully convolutional networks (FCN) method was proposed for automated vessel wall segmentation by hierarchical extraction of low- and high-order convolutional features. Results: The network was trained and validated on 1160 slices and tested on 545 slices. The proposed segmentation method demonstrated satisfactory agreement with manual segmentations with Dice coefficient of 0.89 for the lumen and 0.77 for the vessel wall. The method was further applied to a clinical study of additional 12 symptomatic and 12 asymptomatic patients with >50% ICAD stenosis at the middle cerebral artery (MCA). Normalized wall index at the focal MCA ICAD lesions was found significantly larger in symptomatic patients compared to asymptomatic patients. Conclusion: We have presented an automated vessel wall segmentation method based on FCN as well as the IVA framework for 3-D intracranial MR VWI. Significance: This approach would make large-scale quantitative plaque analysis more realistic and promote the adoption of MR VWI in ICAD management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米妮完成签到,获得积分10
刚刚
今后应助lqcolleen采纳,获得10
刚刚
刚刚
DQY发布了新的文献求助10
1秒前
Ry完成签到,获得积分10
1秒前
Liu给Liu的求助进行了留言
1秒前
Zhang应助孤独的AD钙采纳,获得10
1秒前
谷粱夏山完成签到,获得积分20
1秒前
沈言应助感动城采纳,获得10
1秒前
沈言应助珏珏子采纳,获得10
1秒前
changyongcheng完成签到 ,获得积分10
2秒前
傅傅发布了新的文献求助10
2秒前
ccciii发布了新的文献求助10
2秒前
ysm完成签到,获得积分10
3秒前
聪慧千亦发布了新的文献求助10
3秒前
善学以致用应助www采纳,获得10
4秒前
毛翀完成签到,获得积分10
4秒前
4秒前
5秒前
妮可粒子完成签到,获得积分10
6秒前
整挺好发布了新的文献求助10
7秒前
慕青应助Zzsfe163采纳,获得10
7秒前
聪慧千亦完成签到,获得积分10
9秒前
精灵夜雨完成签到,获得积分10
9秒前
烟花应助FrozNineTivus采纳,获得10
10秒前
Gilana完成签到,获得积分10
10秒前
fallin关注了科研通微信公众号
10秒前
独角大盗发布了新的文献求助10
10秒前
海洋之心发布了新的文献求助10
11秒前
lalala应助Wt采纳,获得20
11秒前
12秒前
棒槌完成签到,获得积分10
12秒前
12秒前
Zhang应助苹果易真采纳,获得10
13秒前
ogeeal发布了新的文献求助10
13秒前
今后应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
14秒前
VaVa应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
HCLonely应助科研通管家采纳,获得10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311604
求助须知:如何正确求助?哪些是违规求助? 2944429
关于积分的说明 8519013
捐赠科研通 2619785
什么是DOI,文献DOI怎么找? 1432582
科研通“疑难数据库(出版商)”最低求助积分说明 664714
邀请新用户注册赠送积分活动 649982