Hierarchical Convolutional Neural Networks for Segmentation of Breast Tumors in MRI With Application to Radiogenomics

放射基因组学 分割 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 图像分割 Sørensen–骰子系数 磁共振成像 感兴趣区域 乳房磁振造影 掷骰子 计算机视觉 乳腺摄影术 放射科 乳腺癌 无线电技术 医学 数学 癌症 内科学 几何学
作者
Jun Zhang,Ashirbani Saha,Zhe Zhu,Maciej A. Mazurowski
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (2): 435-447 被引量:143
标识
DOI:10.1109/tmi.2018.2865671
摘要

Breast tumor segmentation based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a challenging problem and an active area of research. Particular challenges, similarly as in other segmentation problems, include the class-imbalance problem as well as confounding background in DCE-MR images. To address these issues, we propose a mask-guided hierarchical learning (MHL) framework for breast tumor segmentation via fully convolutional networks (FCN). Specifically, we first develop an FCN model to generate a 3D breast mask as the region of interest (ROI) for each image, to remove confounding information from input DCE-MR images. We then design a two-stage FCN model to perform coarse-to-fine segmentation for breast tumors. Particularly, we propose a Dice-Sensitivity-like loss function and a reinforcement sampling strategy to handle the class-imbalance problem. To precisely identify locations of tumors that underwent a biopsy, we further propose an FCN model to detect two landmarks located at two nipples. We finally selected the biopsied tumor based on both identified landmarks and segmentations. We validate our MHL method on 272 patients, achieving a mean Dice similarity coefficient (DSC) of 0.72 which is comparable to mutual DSC between expert radiologists. Using the segmented biopsied tumors, we also demonstrate that the automatically generated masks can be applied to radiogenomics and can identify luminal A subtype from other molecular subtypes with the similar accuracy with the analysis based on semi-manual tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有机会吗发布了新的文献求助10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得30
1秒前
李健的小迷弟应助yuwen采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
yznfly应助科研通管家采纳,获得30
1秒前
yznfly应助科研通管家采纳,获得30
1秒前
dypdyp应助科研通管家采纳,获得10
1秒前
1秒前
Xide完成签到,获得积分10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
2秒前
xinjie发布了新的文献求助10
3秒前
布可完成签到,获得积分10
7秒前
7秒前
CC柚发布了新的文献求助20
8秒前
科研通AI5应助vision0000采纳,获得10
8秒前
阿Q完成签到,获得积分10
10秒前
11秒前
上将军顺完成签到,获得积分10
11秒前
Hollow发布了新的文献求助10
12秒前
qwaz完成签到,获得积分10
14秒前
14秒前
脑洞疼应助julien采纳,获得10
14秒前
852应助生医工小博采纳,获得10
15秒前
15秒前
喽喽完成签到,获得积分10
15秒前
叽里呱啦发布了新的文献求助10
15秒前
Ava应助Hollow采纳,获得10
18秒前
氮化硼小兵给氮化硼小兵的求助进行了留言
19秒前
22秒前
今后应助老乔采纳,获得10
24秒前
小蘑菇应助lunjianchi采纳,获得10
24秒前
刘佳冉完成签到,获得积分10
25秒前
25秒前
26秒前
淡然善斓完成签到,获得积分10
27秒前
要减肥的惜萱完成签到,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517