计算机科学
异常检测
离群值
人工智能
维数之咒
机器学习
特征学习
代表(政治)
降维
光学(聚焦)
模式识别(心理学)
外部数据表示
无监督学习
非线性降维
数据挖掘
政治
光学
物理
政治学
法学
作者
Guansong Pang,Longbing Cao,Ling Chen,Huan Liu
出处
期刊:Cornell University - arXiv
日期:2018-07-19
被引量:142
标识
DOI:10.1145/3219819.3220042
摘要
Learning expressive low-dimensional representations of ultrahigh-dimensional data, e.g., data with thousands/millions of features, has been a major way to enable learning methods to address the curse of dimensionality. However, existing unsupervised representation learning methods mainly focus on preserving the data regularity information and learning the representations independently of subsequent outlier detection methods, which can result in suboptimal and unstable performance of detecting irregularities (i.e., outliers).
科研通智能强力驱动
Strongly Powered by AbleSci AI