Deep Learning with R

深度学习 人工智能 Python(编程语言) 计算机科学
作者
François Chollet,J.J. Allaire
出处
期刊:Manning Publications Co. eBooks [Manning Publications Co.]
被引量:77
链接
摘要

Summary Deep Learning with R introduces the world of deep learning using the powerful Keras library and its R language interface. The book builds your understanding of deep learning through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. Deep-learning systems now enable previously impossible smart applications, revolutionizing image recognition and natural-language processing, and identifying complex patterns in data. The Keras deep-learning library provides data scientists and developers working in R a state-of-the-art toolset for tackling deep-learning tasks. About the Book Deep Learning with R introduces the world of deep learning using the powerful Keras library and its R language interface. Initially written for Python as Deep Learning with Python by Keras creator and Google AI researcher Franois Chollet and adapted for R by RStudio founder J. J. Allaire, this book builds your understanding of deep learning through intuitive explanations and practical examples. You'll practice your new skills with R-based applications in computer vision, natural-language processing, and generative models. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image classification and generation Deep learning for text and sequences About the Reader You'll need intermediate R programming skills. No previous experience with machine learning or deep learning is assumed. About the Authors Franois Chollet is a deep-learning researcher at Google and the author of the Keras library. J.J. Allaire is the founder of RStudio and the author of the R interfaces to Tensor Flow and Keras.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
清风完成签到 ,获得积分10
7秒前
黑子完成签到 ,获得积分10
17秒前
桃儿完成签到 ,获得积分10
17秒前
大生蚝完成签到 ,获得积分10
19秒前
21秒前
23秒前
23秒前
鹿雅彤完成签到 ,获得积分10
24秒前
科研通AI2S应助qw1采纳,获得10
29秒前
飞快的冰淇淋完成签到 ,获得积分10
33秒前
霹雳小土豆-完成签到,获得积分10
35秒前
yzhilson完成签到 ,获得积分10
38秒前
41秒前
上善若水呦完成签到 ,获得积分10
42秒前
43秒前
DFMDFMDFM发布了新的文献求助10
46秒前
困困困完成签到 ,获得积分10
49秒前
tzy6665完成签到,获得积分10
51秒前
DFMDFMDFM完成签到,获得积分10
57秒前
西红柿不吃皮完成签到 ,获得积分10
58秒前
1分钟前
jameslee04完成签到 ,获得积分10
1分钟前
居里姐姐完成签到 ,获得积分10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
kehe!完成签到 ,获得积分0
1分钟前
优美的冰巧完成签到 ,获得积分10
1分钟前
老张完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
胖胖完成签到 ,获得积分0
1分钟前
赞学堂完成签到 ,获得积分10
1分钟前
344061512完成签到 ,获得积分10
1分钟前
konosuba完成签到,获得积分10
1分钟前
ksr8888发布了新的文献求助30
1分钟前
等待醉柳完成签到,获得积分10
1分钟前
共享精神应助等待醉柳采纳,获得10
1分钟前
微笑芒果完成签到 ,获得积分10
2分钟前
Herbs完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445148
求助须知:如何正确求助?哪些是违规求助? 3041200
关于积分的说明 8984074
捐赠科研通 2729768
什么是DOI,文献DOI怎么找? 1497204
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689714