系统间交叉
光化学
塔特布
磷光
单线态氧
三重态
铋
材料科学
化学
光催化
金属有机骨架
单重态
催化作用
配体(生物化学)
激发态
荧光
氧气
分子
物理化学
有机化学
原子物理学
吸附
爆炸物
受体
物理
起爆
量子力学
生物化学
作者
Ruoqian Zhang,Yuanyuan Liu,Zeyan Wang,Peng Wang,Zhaoke Zheng,Xiaoyan Qin,Xiaoyang Zhang,Ying Dai,Myung‐Hwan Whangbo,Baibiao Huang
标识
DOI:10.1016/j.apcatb.2019.05.024
摘要
So far, most efforts in photocatalysis have been devoted to the separation of photogenerated electron-hole pairs, and possible use of excitons (i.e., electron-hole pairs) for photocatalytic processes has not received much attention. In this work, we studied the effect of metal dots on the excitonic behaviors of two bismuth-based MOFs, Bi-TATB and Bi-BTC (here the tridentate ligands TATB3− and BTC3− represent the carboxylates of 4,4′,4′'-s-triazine-2,4,6-triyl-tribenzoic and 1,3,5-benzenetricarboxylic acids, respectively). The organic ligands (TATB and BTC) display different emission properties from the corresponding Bi based MOFs. Specifically, TATB and BTC display strong fluorescence emission while Bi-TATB and Bi-BTC display strong phosphorescence emission, suggesting the higher efficiency of intersystem crossing for Bi-TATB and Bi-BTC. The reason is attributed to the coordination with Bi, which promotes the singlet→ triplet intersystem crossing of the organic ligand due to the heavy metal effect. The enhanced triplet excited emission of Bi-TATB and Bi-BTC was further confirmed by the detection of 1O2, as 1O2 is well known to be formed due to energy transfer from the triplet state of photosensitizers to the ground-state oxygen (3O2). With above understanding, Bi-TATB and Bi-BTC were finally used to high selective photooxidation of benzyl alcohol to benzaldehyde. This work presents new understanding of the photophysical properties of Bi based MOFs, which provides alternative ideas on designing materials for selective photo-oxidation.
科研通智能强力驱动
Strongly Powered by AbleSci AI