Accuracy of breast cancer lesion classification using intravoxel incoherent motion diffusion‐weighted imaging is improved by the inclusion of global or local prior knowledge with bayesian methods

盒内非相干运动 核医学 接收机工作特性 乳腺癌 医学 磁共振弥散成像 曼惠特尼U检验 数学 相关性 乳房磁振造影 动态增强MRI 放射科 磁共振成像 统计 癌症 乳腺摄影术 内科学 几何学
作者
Igor Vidić,Neil P. Jerome,Tone F. Bathen,Pål Erik Goa,Peter T. While
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:50 (5): 1478-1488 被引量:20
标识
DOI:10.1002/jmri.26772
摘要

Diffusion-weighted MRI (DWI) has potential to noninvasively characterize breast cancer lesions; models such as intravoxel incoherent motion (IVIM) provide pseudodiffusion parameters that reflect tissue perfusion, but are dependent on the details of acquisition and analysis strategy.To examine the effect of fitting algorithms, including conventional least-squares (LSQ) and segmented (SEG) methods as well as Bayesian methods with global shrinkage (BSP) and local spatial (FBM) priors, on the power of IVIM parameters to differentiate benign and malignant breast lesions.Prospective patient study.61 patients with confirmed breast lesions.DWI (bipolar SE-EPI, 13 b values) was included in a clinical MR protocol including T2 -weighted and dynamic contrast-enhanced MRI on a 3T scanner.The IVIM model was fitted voxelwise in lesion regions of interest (ROIs), and derived parameters were compared across methods within benign and malignant subgroups (correlation, coefficients of variation). Area under receiver operator characteristic curves (ROC AUCs) were calculated to determine discriminatory power of parameter combinations from all fitting methods.Kruskal-Wallis, Mann-Whitney, Pearson correlation.All methods provided useful IVIM parameters; D was well-correlated across all methods (r > 0.8), with a wider range for f and D* (0.3-0.7). Fitting methods gave detectable differences in parameters, but all showed increased f and decreased D in malign lesions. D was the most discriminatory single parameter, with LSQ performing least well (AUC 0.83). In general, ROC AUCs were maximized by the inclusion of pseudodiffusion parameters, and by the use of Bayesian methods incorporating prior information (maximum AUC of 0.92 for BSP).DWI performs well at classifying breast lesions, but careful consideration of analysis procedure can improve performance. D is the most discriminatory single parameter, but including pseudodiffusion parameters (f and D*) increases ROC AUC. Bayesian methods outperformed conventional least-squares and segmented fitting methods for breast lesion classification.3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1478-1488.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助百浪多息采纳,获得10
刚刚
王肖宁发布了新的文献求助10
1秒前
1秒前
3秒前
秋澄完成签到 ,获得积分10
6秒前
7秒前
时光中的微粒完成签到 ,获得积分10
8秒前
lixiaorui发布了新的文献求助10
8秒前
科研通AI2S应助山沟沟采纳,获得10
9秒前
百浪多息完成签到,获得积分10
11秒前
LL完成签到 ,获得积分10
11秒前
呼呼呼完成签到,获得积分10
11秒前
今后应助多情山蝶采纳,获得10
11秒前
11秒前
Ming完成签到,获得积分10
12秒前
geats发布了新的文献求助10
12秒前
14秒前
15秒前
果冻呀完成签到,获得积分10
15秒前
17秒前
18秒前
小马甲应助一个小胖子采纳,获得10
21秒前
完美世界应助TTUTT采纳,获得10
21秒前
23秒前
lixiaorui发布了新的文献求助10
25秒前
歪比巴卜发布了新的文献求助10
25秒前
悲凉的大有完成签到,获得积分10
26秒前
0128lun发布了新的文献求助10
28秒前
上上签完成签到,获得积分10
28秒前
细心怀亦完成签到 ,获得积分10
28秒前
星之茧发布了新的文献求助10
30秒前
31秒前
废H发布了新的文献求助10
31秒前
31秒前
歪比巴卜完成签到,获得积分10
34秒前
34秒前
土豆完成签到,获得积分20
36秒前
多情山蝶发布了新的文献求助10
36秒前
水水的完成签到 ,获得积分10
37秒前
恸哭的千鸟完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536900
求助须知:如何正确求助?哪些是违规求助? 4624585
关于积分的说明 14592312
捐赠科研通 4565008
什么是DOI,文献DOI怎么找? 2502121
邀请新用户注册赠送积分活动 1480851
关于科研通互助平台的介绍 1452093