Accuracy of breast cancer lesion classification using intravoxel incoherent motion diffusion‐weighted imaging is improved by the inclusion of global or local prior knowledge with bayesian methods

盒内非相干运动 核医学 接收机工作特性 乳腺癌 医学 磁共振弥散成像 曼惠特尼U检验 数学 相关性 乳房磁振造影 动态增强MRI 放射科 磁共振成像 统计 癌症 乳腺摄影术 内科学 几何学
作者
Igor Vidić,Neil P. Jerome,Tone F. Bathen,Pål Erik Goa,Peter T. While
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:50 (5): 1478-1488 被引量:20
标识
DOI:10.1002/jmri.26772
摘要

Diffusion-weighted MRI (DWI) has potential to noninvasively characterize breast cancer lesions; models such as intravoxel incoherent motion (IVIM) provide pseudodiffusion parameters that reflect tissue perfusion, but are dependent on the details of acquisition and analysis strategy.To examine the effect of fitting algorithms, including conventional least-squares (LSQ) and segmented (SEG) methods as well as Bayesian methods with global shrinkage (BSP) and local spatial (FBM) priors, on the power of IVIM parameters to differentiate benign and malignant breast lesions.Prospective patient study.61 patients with confirmed breast lesions.DWI (bipolar SE-EPI, 13 b values) was included in a clinical MR protocol including T2 -weighted and dynamic contrast-enhanced MRI on a 3T scanner.The IVIM model was fitted voxelwise in lesion regions of interest (ROIs), and derived parameters were compared across methods within benign and malignant subgroups (correlation, coefficients of variation). Area under receiver operator characteristic curves (ROC AUCs) were calculated to determine discriminatory power of parameter combinations from all fitting methods.Kruskal-Wallis, Mann-Whitney, Pearson correlation.All methods provided useful IVIM parameters; D was well-correlated across all methods (r > 0.8), with a wider range for f and D* (0.3-0.7). Fitting methods gave detectable differences in parameters, but all showed increased f and decreased D in malign lesions. D was the most discriminatory single parameter, with LSQ performing least well (AUC 0.83). In general, ROC AUCs were maximized by the inclusion of pseudodiffusion parameters, and by the use of Bayesian methods incorporating prior information (maximum AUC of 0.92 for BSP).DWI performs well at classifying breast lesions, but careful consideration of analysis procedure can improve performance. D is the most discriminatory single parameter, but including pseudodiffusion parameters (f and D*) increases ROC AUC. Bayesian methods outperformed conventional least-squares and segmented fitting methods for breast lesion classification.3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1478-1488.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
melina完成签到 ,获得积分10
1秒前
楚楚完成签到 ,获得积分10
3秒前
zbb123完成签到 ,获得积分10
5秒前
BinSir完成签到 ,获得积分10
7秒前
yeyeye完成签到 ,获得积分10
8秒前
Liziqi823完成签到,获得积分10
9秒前
科研小菜狗完成签到 ,获得积分10
10秒前
薛强完成签到,获得积分10
10秒前
Feren完成签到,获得积分10
10秒前
zhangnan完成签到 ,获得积分10
12秒前
满意的念柏完成签到,获得积分10
20秒前
kingfly2010完成签到,获得积分10
25秒前
25秒前
丰富的白开水完成签到,获得积分10
28秒前
英姑应助Eileen采纳,获得10
29秒前
sjw525完成签到,获得积分10
31秒前
WULAVIVA完成签到,获得积分10
32秒前
gnil完成签到,获得积分10
33秒前
lemonkim完成签到,获得积分10
35秒前
豆子完成签到,获得积分10
35秒前
zw完成签到 ,获得积分10
37秒前
仇敌克星完成签到,获得积分10
37秒前
qiaoxi完成签到,获得积分10
41秒前
文静若血完成签到,获得积分10
41秒前
秋风之墩完成签到,获得积分10
42秒前
2316690509完成签到 ,获得积分10
45秒前
hdc12138完成签到,获得积分10
47秒前
puritan完成签到 ,获得积分10
47秒前
48秒前
yyy2025完成签到,获得积分10
49秒前
美满的水卉完成签到,获得积分10
50秒前
affff完成签到 ,获得积分10
51秒前
36456657完成签到,获得积分0
52秒前
寒梅恋雪完成签到 ,获得积分10
59秒前
凶狠的白桃完成签到 ,获得积分10
1分钟前
小熊熊完成签到 ,获得积分10
1分钟前
1分钟前
nono完成签到 ,获得积分10
1分钟前
大方的书雁完成签到,获得积分10
1分钟前
23完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568349
求助须知:如何正确求助?哪些是违规求助? 4652828
关于积分的说明 14702073
捐赠科研通 4594644
什么是DOI,文献DOI怎么找? 2521188
邀请新用户注册赠送积分活动 1492928
关于科研通互助平台的介绍 1463734