Accuracy of breast cancer lesion classification using intravoxel incoherent motion diffusion‐weighted imaging is improved by the inclusion of global or local prior knowledge with bayesian methods

盒内非相干运动 核医学 接收机工作特性 乳腺癌 医学 磁共振弥散成像 曼惠特尼U检验 数学 相关性 乳房磁振造影 动态增强MRI 放射科 磁共振成像 统计 癌症 乳腺摄影术 内科学 几何学
作者
Igor Vidić,Neil P. Jerome,Tone F. Bathen,Pål Erik Goa,Peter T. While
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:50 (5): 1478-1488 被引量:20
标识
DOI:10.1002/jmri.26772
摘要

Diffusion-weighted MRI (DWI) has potential to noninvasively characterize breast cancer lesions; models such as intravoxel incoherent motion (IVIM) provide pseudodiffusion parameters that reflect tissue perfusion, but are dependent on the details of acquisition and analysis strategy.To examine the effect of fitting algorithms, including conventional least-squares (LSQ) and segmented (SEG) methods as well as Bayesian methods with global shrinkage (BSP) and local spatial (FBM) priors, on the power of IVIM parameters to differentiate benign and malignant breast lesions.Prospective patient study.61 patients with confirmed breast lesions.DWI (bipolar SE-EPI, 13 b values) was included in a clinical MR protocol including T2 -weighted and dynamic contrast-enhanced MRI on a 3T scanner.The IVIM model was fitted voxelwise in lesion regions of interest (ROIs), and derived parameters were compared across methods within benign and malignant subgroups (correlation, coefficients of variation). Area under receiver operator characteristic curves (ROC AUCs) were calculated to determine discriminatory power of parameter combinations from all fitting methods.Kruskal-Wallis, Mann-Whitney, Pearson correlation.All methods provided useful IVIM parameters; D was well-correlated across all methods (r > 0.8), with a wider range for f and D* (0.3-0.7). Fitting methods gave detectable differences in parameters, but all showed increased f and decreased D in malign lesions. D was the most discriminatory single parameter, with LSQ performing least well (AUC 0.83). In general, ROC AUCs were maximized by the inclusion of pseudodiffusion parameters, and by the use of Bayesian methods incorporating prior information (maximum AUC of 0.92 for BSP).DWI performs well at classifying breast lesions, but careful consideration of analysis procedure can improve performance. D is the most discriminatory single parameter, but including pseudodiffusion parameters (f and D*) increases ROC AUC. Bayesian methods outperformed conventional least-squares and segmented fitting methods for breast lesion classification.3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1478-1488.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
放倒巨大豆蔓完成签到,获得积分10
刚刚
1秒前
帅气善斓发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
李爱国应助Hed采纳,获得10
2秒前
H丶化羽发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
可爱的函函应助木槿采纳,获得10
3秒前
现实的筮完成签到,获得积分10
3秒前
3秒前
hokin33发布了新的文献求助100
3秒前
ChemGuo发布了新的文献求助10
3秒前
3秒前
4秒前
Lucas应助无某采纳,获得10
4秒前
沉默的函完成签到,获得积分10
4秒前
qvqtttttt完成签到,获得积分10
4秒前
4秒前
舒适的素发布了新的文献求助10
5秒前
饭神仙鱼完成签到,获得积分10
5秒前
万能图书馆应助Jerry采纳,获得10
6秒前
传奇3应助nn采纳,获得10
6秒前
6秒前
刘可发布了新的文献求助10
6秒前
沉静胜完成签到,获得积分10
6秒前
在水一方应助无心采纳,获得10
6秒前
呃呃呃呃完成签到,获得积分10
7秒前
7秒前
Sickey完成签到,获得积分10
7秒前
脑洞疼应助slgzhangtao采纳,获得10
7秒前
睿力完成签到,获得积分10
8秒前
Hazel发布了新的文献求助10
8秒前
喜悦兰完成签到,获得积分10
8秒前
万能图书馆应助现实的筮采纳,获得10
8秒前
9秒前
JamesPei应助傲娇的小天鹅采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659263
求助须知:如何正确求助?哪些是违规求助? 4828262
关于积分的说明 15086235
捐赠科研通 4817957
什么是DOI,文献DOI怎么找? 2578418
邀请新用户注册赠送积分活动 1533076
关于科研通互助平台的介绍 1491767