Accuracy of breast cancer lesion classification using intravoxel incoherent motion diffusion‐weighted imaging is improved by the inclusion of global or local prior knowledge with bayesian methods

盒内非相干运动 核医学 接收机工作特性 乳腺癌 医学 磁共振弥散成像 曼惠特尼U检验 数学 相关性 乳房磁振造影 动态增强MRI 放射科 磁共振成像 统计 癌症 乳腺摄影术 内科学 几何学
作者
Igor Vidić,Neil P. Jerome,Tone F. Bathen,Pål Erik Goa,Peter T. While
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:50 (5): 1478-1488 被引量:20
标识
DOI:10.1002/jmri.26772
摘要

Diffusion-weighted MRI (DWI) has potential to noninvasively characterize breast cancer lesions; models such as intravoxel incoherent motion (IVIM) provide pseudodiffusion parameters that reflect tissue perfusion, but are dependent on the details of acquisition and analysis strategy.To examine the effect of fitting algorithms, including conventional least-squares (LSQ) and segmented (SEG) methods as well as Bayesian methods with global shrinkage (BSP) and local spatial (FBM) priors, on the power of IVIM parameters to differentiate benign and malignant breast lesions.Prospective patient study.61 patients with confirmed breast lesions.DWI (bipolar SE-EPI, 13 b values) was included in a clinical MR protocol including T2 -weighted and dynamic contrast-enhanced MRI on a 3T scanner.The IVIM model was fitted voxelwise in lesion regions of interest (ROIs), and derived parameters were compared across methods within benign and malignant subgroups (correlation, coefficients of variation). Area under receiver operator characteristic curves (ROC AUCs) were calculated to determine discriminatory power of parameter combinations from all fitting methods.Kruskal-Wallis, Mann-Whitney, Pearson correlation.All methods provided useful IVIM parameters; D was well-correlated across all methods (r > 0.8), with a wider range for f and D* (0.3-0.7). Fitting methods gave detectable differences in parameters, but all showed increased f and decreased D in malign lesions. D was the most discriminatory single parameter, with LSQ performing least well (AUC 0.83). In general, ROC AUCs were maximized by the inclusion of pseudodiffusion parameters, and by the use of Bayesian methods incorporating prior information (maximum AUC of 0.92 for BSP).DWI performs well at classifying breast lesions, but careful consideration of analysis procedure can improve performance. D is the most discriminatory single parameter, but including pseudodiffusion parameters (f and D*) increases ROC AUC. Bayesian methods outperformed conventional least-squares and segmented fitting methods for breast lesion classification.3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1478-1488.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高雍完成签到 ,获得积分10
刚刚
安和大桥完成签到,获得积分10
1秒前
所所应助阔达尔白采纳,获得10
1秒前
pups发布了新的文献求助10
1秒前
雾栖亓发布了新的文献求助10
1秒前
幸福柜子完成签到,获得积分10
1秒前
roger完成签到,获得积分10
2秒前
2秒前
东方树叶发布了新的文献求助10
2秒前
垃圾桶完成签到 ,获得积分10
2秒前
2秒前
乐乐应助Taishan采纳,获得10
2秒前
酷波er应助皮卡丘大王采纳,获得10
3秒前
3秒前
小周睡不饱完成签到,获得积分10
3秒前
3秒前
小虎发布了新的文献求助10
3秒前
吴彦祖的通通完成签到,获得积分10
4秒前
4秒前
英姑应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得20
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
Stella应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401