Accuracy of breast cancer lesion classification using intravoxel incoherent motion diffusion‐weighted imaging is improved by the inclusion of global or local prior knowledge with bayesian methods

盒内非相干运动 核医学 接收机工作特性 乳腺癌 医学 磁共振弥散成像 曼惠特尼U检验 数学 相关性 乳房磁振造影 动态增强MRI 放射科 磁共振成像 统计 癌症 乳腺摄影术 内科学 几何学
作者
Igor Vidić,Neil P. Jerome,Tone F. Bathen,Pål Erik Goa,Peter T. While
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:50 (5): 1478-1488 被引量:20
标识
DOI:10.1002/jmri.26772
摘要

Diffusion-weighted MRI (DWI) has potential to noninvasively characterize breast cancer lesions; models such as intravoxel incoherent motion (IVIM) provide pseudodiffusion parameters that reflect tissue perfusion, but are dependent on the details of acquisition and analysis strategy.To examine the effect of fitting algorithms, including conventional least-squares (LSQ) and segmented (SEG) methods as well as Bayesian methods with global shrinkage (BSP) and local spatial (FBM) priors, on the power of IVIM parameters to differentiate benign and malignant breast lesions.Prospective patient study.61 patients with confirmed breast lesions.DWI (bipolar SE-EPI, 13 b values) was included in a clinical MR protocol including T2 -weighted and dynamic contrast-enhanced MRI on a 3T scanner.The IVIM model was fitted voxelwise in lesion regions of interest (ROIs), and derived parameters were compared across methods within benign and malignant subgroups (correlation, coefficients of variation). Area under receiver operator characteristic curves (ROC AUCs) were calculated to determine discriminatory power of parameter combinations from all fitting methods.Kruskal-Wallis, Mann-Whitney, Pearson correlation.All methods provided useful IVIM parameters; D was well-correlated across all methods (r > 0.8), with a wider range for f and D* (0.3-0.7). Fitting methods gave detectable differences in parameters, but all showed increased f and decreased D in malign lesions. D was the most discriminatory single parameter, with LSQ performing least well (AUC 0.83). In general, ROC AUCs were maximized by the inclusion of pseudodiffusion parameters, and by the use of Bayesian methods incorporating prior information (maximum AUC of 0.92 for BSP).DWI performs well at classifying breast lesions, but careful consideration of analysis procedure can improve performance. D is the most discriminatory single parameter, but including pseudodiffusion parameters (f and D*) increases ROC AUC. Bayesian methods outperformed conventional least-squares and segmented fitting methods for breast lesion classification.3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1478-1488.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐静春完成签到,获得积分10
刚刚
jelly完成签到 ,获得积分10
刚刚
1秒前
小二郎应助九九采纳,获得10
2秒前
3秒前
小二郎应助顾我采纳,获得10
4秒前
mdie发布了新的文献求助10
4秒前
argwew发布了新的文献求助10
7秒前
7秒前
FashionBoy应助xunanlei采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
wzyyyyy发布了新的文献求助10
10秒前
10秒前
梦里江南发布了新的文献求助10
11秒前
尚可完成签到 ,获得积分10
11秒前
12秒前
han发布了新的文献求助10
13秒前
学萌发布了新的文献求助30
14秒前
wsy完成签到,获得积分10
15秒前
小盆完成签到,获得积分10
15秒前
扶摇完成签到 ,获得积分10
16秒前
1212完成签到 ,获得积分10
17秒前
wsy发布了新的文献求助30
18秒前
18秒前
烟花应助mdie采纳,获得10
18秒前
kt完成签到,获得积分10
19秒前
xunanlei发布了新的文献求助10
21秒前
好好学习发布了新的文献求助10
21秒前
搜集达人应助tanhaowen采纳,获得10
23秒前
孤独的乾发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
Jasper应助导师求放过采纳,获得10
25秒前
vielate完成签到,获得积分10
26秒前
winndsd2发布了新的文献求助10
27秒前
moos完成签到 ,获得积分10
28秒前
29秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454534
求助须知:如何正确求助?哪些是违规求助? 4561872
关于积分的说明 14283842
捐赠科研通 4485737
什么是DOI,文献DOI怎么找? 2456966
邀请新用户注册赠送积分活动 1447648
关于科研通互助平台的介绍 1422874