Accuracy of breast cancer lesion classification using intravoxel incoherent motion diffusion‐weighted imaging is improved by the inclusion of global or local prior knowledge with bayesian methods

盒内非相干运动 核医学 接收机工作特性 乳腺癌 医学 磁共振弥散成像 曼惠特尼U检验 数学 相关性 乳房磁振造影 动态增强MRI 放射科 磁共振成像 统计 癌症 乳腺摄影术 内科学 几何学
作者
Igor Vidić,Neil P. Jerome,Tone F. Bathen,Pål Erik Goa,Peter T. While
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:50 (5): 1478-1488 被引量:20
标识
DOI:10.1002/jmri.26772
摘要

Diffusion-weighted MRI (DWI) has potential to noninvasively characterize breast cancer lesions; models such as intravoxel incoherent motion (IVIM) provide pseudodiffusion parameters that reflect tissue perfusion, but are dependent on the details of acquisition and analysis strategy.To examine the effect of fitting algorithms, including conventional least-squares (LSQ) and segmented (SEG) methods as well as Bayesian methods with global shrinkage (BSP) and local spatial (FBM) priors, on the power of IVIM parameters to differentiate benign and malignant breast lesions.Prospective patient study.61 patients with confirmed breast lesions.DWI (bipolar SE-EPI, 13 b values) was included in a clinical MR protocol including T2 -weighted and dynamic contrast-enhanced MRI on a 3T scanner.The IVIM model was fitted voxelwise in lesion regions of interest (ROIs), and derived parameters were compared across methods within benign and malignant subgroups (correlation, coefficients of variation). Area under receiver operator characteristic curves (ROC AUCs) were calculated to determine discriminatory power of parameter combinations from all fitting methods.Kruskal-Wallis, Mann-Whitney, Pearson correlation.All methods provided useful IVIM parameters; D was well-correlated across all methods (r > 0.8), with a wider range for f and D* (0.3-0.7). Fitting methods gave detectable differences in parameters, but all showed increased f and decreased D in malign lesions. D was the most discriminatory single parameter, with LSQ performing least well (AUC 0.83). In general, ROC AUCs were maximized by the inclusion of pseudodiffusion parameters, and by the use of Bayesian methods incorporating prior information (maximum AUC of 0.92 for BSP).DWI performs well at classifying breast lesions, but careful consideration of analysis procedure can improve performance. D is the most discriminatory single parameter, but including pseudodiffusion parameters (f and D*) increases ROC AUC. Bayesian methods outperformed conventional least-squares and segmented fitting methods for breast lesion classification.3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1478-1488.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洋溢完成签到,获得积分10
1秒前
舒心的秋荷完成签到 ,获得积分10
1秒前
ffchen111完成签到 ,获得积分10
2秒前
7秒前
帆帆帆完成签到 ,获得积分10
8秒前
淳于白凝完成签到,获得积分10
8秒前
感动归尘完成签到,获得积分10
8秒前
孤独黑猫完成签到 ,获得积分10
11秒前
宋十一发布了新的文献求助10
12秒前
bkagyin应助韭菜盒子采纳,获得10
12秒前
叮叮车完成签到 ,获得积分10
13秒前
荔枝波波加油完成签到 ,获得积分10
13秒前
英俊的铭应助wblydz采纳,获得10
14秒前
Mt完成签到,获得积分10
18秒前
十一克拉完成签到,获得积分10
18秒前
陈陈完成签到 ,获得积分10
19秒前
韭菜盒子完成签到,获得积分20
20秒前
宋十一完成签到,获得积分10
21秒前
Xunr完成签到 ,获得积分10
21秒前
gy完成签到 ,获得积分10
22秒前
ANEWKID完成签到,获得积分10
22秒前
可萨利亚应助哎嘤斯坦采纳,获得10
23秒前
不吃鱼的猫完成签到,获得积分10
25秒前
小九完成签到,获得积分10
25秒前
刀笔吏完成签到,获得积分10
25秒前
闪闪绮梅完成签到 ,获得积分10
26秒前
大力完成签到 ,获得积分10
27秒前
daisy完成签到 ,获得积分10
28秒前
Kevin完成签到,获得积分10
28秒前
30秒前
zhangxi完成签到,获得积分10
31秒前
灰鸽舞完成签到 ,获得积分10
32秒前
xiying完成签到 ,获得积分10
35秒前
老北京完成签到,获得积分10
35秒前
Owen应助陈醒醒采纳,获得10
37秒前
秋迎夏完成签到,获得积分0
39秒前
InfoNinja完成签到,获得积分0
41秒前
快乐小菜瓜完成签到 ,获得积分10
42秒前
贰鸟应助科研通管家采纳,获得20
42秒前
栗子应助哎嘤斯坦采纳,获得10
42秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150630
求助须知:如何正确求助?哪些是违规求助? 2802187
关于积分的说明 7846295
捐赠科研通 2459463
什么是DOI,文献DOI怎么找? 1309286
科研通“疑难数据库(出版商)”最低求助积分说明 628803
版权声明 601757