微泡
微流控
微流控芯片
化学
卵巢癌
纳米技术
癌症
色谱法
材料科学
医学
生物化学
内科学
小RNA
基因
作者
Colin L. Hisey,Kalpana Deepa Priya Dorayappan,David E. Cohn,Karuppaiyah Selvendiran,Derek J. Hansford
出处
期刊:Lab on a Chip
[Royal Society of Chemistry]
日期:2018-01-01
卷期号:18 (20): 3144-3153
被引量:163
摘要
Exosomes are nanoscale vesicles found in many bodily fluids which play a significant role in cell-to-cell signaling and contain biomolecules indicative of their cells of origin. Recently, microfluidic devices have provided the ability to efficiently capture exosomes based on specific membrane biomarkers, but releasing the captured exosomes intact and label-free for downstream characterization and experimentation remains a challenge. We present a herringbone-grooved microfluidic device which is covalently functionalized with antibodies against general and cancer exosome membrane biomarkers (CD9 and EpCAM) to isolate exosomes from small volumes of high-grade serous ovarian cancer (HGSOC) serum. Following capture, intact exosomes are released label-free using a low pH buffer and immediately neutralized downstream to ensure their stability. Characterization of captured and released exosomes was performed using fluorescence microscopy, nanoparticle tracking analysis, flow-cytometry, and SEM. Our results demonstrate the successful isolation of intact and label-free exosomes, indicate that the amount of both total and EpCAM+ exosomes increases with HGSOC disease progression, and demonstrate the downstream internalization of isolated exosomes by OVCAR8 cells. This device and approach can be utilized for a nearly limitless range of downstream exosome analytical and experimental techniques, both on and off-chip.
科研通智能强力驱动
Strongly Powered by AbleSci AI