Epilepsy Detection From EEG Using Complex Network Techniques: A Review

癫痫 脑电图 计算机科学 人工智能 神经科学 心理学
作者
Supriya Supriya,Siuly Siuly,Hua Wang,Yanchun Zhang
出处
期刊:IEEE Reviews in Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16: 292-306 被引量:94
标识
DOI:10.1109/rbme.2021.3055956
摘要

Epilepsy is one of the most chronic brain disorder recorded from since 2000 BC. Almost one-third of epileptic patients experience seizures attack even with medicated treatment. The menace of SUDEP (Sudden unexpected death in epilepsy) in an adult epileptic patient is approximately 8-17% more and 34% in a children epileptic patient. The expert neurologist manually analyses the Electroencephalogram (EEG) signals for epilepsy diagnosis. The non-stationary and complex nature of EEG signals this task more error-prone, time-consuming and even expensive. Hence, it is essential to develop automatic epilepsy detection techniques to ensure an appropriate identification and treatment of this disease. Nowadays, graph-theory has been considered as a prominent approach in the neuroscience field. The network-based approach characterizes a hidden sight of brain activity and brain-behavior mapping. The graph-theory not even helps to understand the underlying dynamics of EEG signals at microscopic, mesoscopic, and macroscopic level but also provide the correlation among them. This paper provides a review report about graph-theory based automated epilepsy detection methods. Furthermore, it will assist the expert's neurologist and researchers with the information of complex network-based epilepsy detection and aid the technician for developing an intelligent system that improving the diagnosis of epilepsy disorder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助lqy采纳,获得10
刚刚
Ava应助执着的凌香采纳,获得10
刚刚
willlow完成签到,获得积分10
刚刚
坦率灵槐完成签到,获得积分10
2秒前
DDD应助玖熙采纳,获得10
3秒前
4秒前
NexusExplorer应助猪猪hero采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
DoctorXu完成签到,获得积分10
6秒前
sheishei完成签到 ,获得积分10
6秒前
7秒前
8秒前
boluo发布了新的文献求助10
9秒前
杨海洋完成签到,获得积分10
9秒前
9秒前
9秒前
Thanatos完成签到,获得积分10
10秒前
10秒前
简简单单发布了新的文献求助10
10秒前
10秒前
mminn发布了新的文献求助30
11秒前
榆木完成签到 ,获得积分10
12秒前
12秒前
坦率的绿柳完成签到,获得积分20
13秒前
JUAN完成签到,获得积分10
14秒前
ZZY发布了新的文献求助20
14秒前
量子星尘发布了新的文献求助10
14秒前
科研通AI6应助读书的时候采纳,获得10
15秒前
猪猪hero发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
wq发布了新的文献求助10
16秒前
kiminonawa应助外向的夜梦采纳,获得10
16秒前
楚楚发布了新的文献求助10
17秒前
情怀应助哒哒哒采纳,获得10
17秒前
充电宝应助跳跃元正采纳,获得10
18秒前
慕青应助昏睡的以南采纳,获得10
19秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800