Epilepsy Detection From EEG Using Complex Network Techniques: A Review

癫痫 脑电图 计算机科学 人工智能 神经科学 心理学
作者
Supriya Supriya,Siuly Siuly,Hua Wang,Yanchun Zhang
出处
期刊:IEEE Reviews in Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16: 292-306 被引量:56
标识
DOI:10.1109/rbme.2021.3055956
摘要

Epilepsy is one of the most chronic brain disorder recorded from since 2000 BC. Almost one-third of epileptic patients experience seizures attack even with medicated treatment. The menace of SUDEP (Sudden unexpected death in epilepsy) in an adult epileptic patient is approximately 8-17% more and 34% in a children epileptic patient. The expert neurologist manually analyses the Electroencephalogram (EEG) signals for epilepsy diagnosis. The non-stationary and complex nature of EEG signals this task more error-prone, time-consuming and even expensive. Hence, it is essential to develop automatic epilepsy detection techniques to ensure an appropriate identification and treatment of this disease. Nowadays, graph-theory has been considered as a prominent approach in the neuroscience field. The network-based approach characterizes a hidden sight of brain activity and brain-behavior mapping. The graph-theory not even helps to understand the underlying dynamics of EEG signals at microscopic, mesoscopic, and macroscopic level but also provide the correlation among them. This paper provides a review report about graph-theory based automated epilepsy detection methods. Furthermore, it will assist the expert's neurologist and researchers with the information of complex network-based epilepsy detection and aid the technician for developing an intelligent system that improving the diagnosis of epilepsy disorder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助网球采纳,获得10
刚刚
zxy完成签到,获得积分10
刚刚
清新的万天完成签到,获得积分10
1秒前
研友_VZG7GZ应助豆沙冰采纳,获得10
1秒前
enternow完成签到 ,获得积分10
2秒前
赘婿应助微笑的鼠标采纳,获得10
2秒前
a1313完成签到,获得积分10
2秒前
2秒前
lyy66964193发布了新的文献求助10
2秒前
华仔应助紧张的寒梦采纳,获得10
4秒前
5秒前
畜牧笑笑完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
尊敬吐司完成签到,获得积分10
6秒前
6秒前
7秒前
gaoyi12356完成签到,获得积分10
7秒前
wanci应助醉熏的飞薇采纳,获得10
7秒前
木木应助可可采纳,获得10
7秒前
烟花应助唠叨的以柳采纳,获得10
7秒前
谨慎初曼给谨慎初曼的求助进行了留言
8秒前
碳14发布了新的文献求助10
8秒前
9秒前
10秒前
xelloss发布了新的文献求助10
11秒前
丰富钢铁侠完成签到,获得积分20
11秒前
11秒前
外向宛菡发布了新的文献求助10
11秒前
11秒前
Phebe发布了新的文献求助10
12秒前
wy.he应助高兴的海亦采纳,获得10
12秒前
研友_Y59785应助高兴的海亦采纳,获得10
12秒前
ZGZ123应助高兴的海亦采纳,获得10
12秒前
12秒前
英姑应助高兴的海亦采纳,获得10
12秒前
12秒前
所所应助高兴的海亦采纳,获得10
12秒前
ED应助高兴的海亦采纳,获得10
12秒前
小二郎应助高兴的海亦采纳,获得30
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978415
求助须知:如何正确求助?哪些是违规求助? 3522416
关于积分的说明 11213317
捐赠科研通 3259798
什么是DOI,文献DOI怎么找? 1799678
邀请新用户注册赠送积分活动 878563
科研通“疑难数据库(出版商)”最低求助积分说明 806987