Estimation Performance for the Cubature Particle Filter under Nonlinear/Non-Gaussian Environments

集合卡尔曼滤波器 扩展卡尔曼滤波器 颗粒过滤器 数学 概率密度函数 高斯分布 卡尔曼滤波器 滤波器(信号处理) 辅助粒子过滤器 算法 无味变换 非线性系统 控制理论(社会学) 应用数学 数学优化 统计 计算机科学 人工智能 物理 量子力学 计算机视觉 控制(管理)
作者
Dah‐Jing Jwo,Chien-Hao Tseng
出处
期刊:Computers, materials & continua 卷期号:67 (2): 1555-1575
标识
DOI:10.32604/cmc.2021.014875
摘要

This paper evaluates the state estimation performance for processing nonlinear/non-Gaussian systems using the cubature particle filter (CPF), which is an estimation algorithm that combines the cubature Kalman filter (CKF) and the particle filter (PF). The CPF is essentially a realization of PF where the third-degree cubature rule based on numerical integration method is adopted to approximate the proposal distribution. It is beneficial where the CKF is used to generate the importance density function in the PF framework for effectively resolving the nonlinear/non-Gaussian problems. Based on the spherical-radial transformation to generate an even number of equally weighted cubature points, the CKF uses cubature points with the same weights through the spherical-radial integration rule and employs an analytical probability density function (pdf) to capture the mean and covariance of the posterior distribution using the total probability theorem and subsequently uses the measurement to update with Bayes’ rule. It is capable of acquiring a maximum a posteriori probability estimate of the nonlinear system, and thus the importance density function can be used to approximate the true posterior density distribution. In Bayesian filtering, the nonlinear filter performs well when all conditional densities are assumed Gaussian. When applied to the nonlinear/non-Gaussian distribution systems, the CPF algorithm can remarkably improve the estimation accuracy as compared to the other particle filter-based approaches, such as the extended particle filter (EPF), and unscented particle filter (UPF), and also the Kalman filter (KF)-type approaches, such as the extended Kalman filter (EKF), unscented Kalman filter (UKF) and CKF. Two illustrative examples are presented showing that the CPF achieves better performance as compared to the other approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无极微光应助灿灿采纳,获得20
1秒前
英姑应助陈陈采纳,获得10
2秒前
4秒前
划分发布了新的文献求助20
4秒前
优秀笑柳发布了新的文献求助10
6秒前
可靠幻然完成签到 ,获得积分10
6秒前
6秒前
BK发布了新的文献求助10
7秒前
Ying发布了新的文献求助30
8秒前
梁真真完成签到 ,获得积分10
8秒前
8秒前
8秒前
小逗比发布了新的文献求助10
8秒前
张佳乐发布了新的文献求助10
9秒前
9秒前
日出发布了新的文献求助10
9秒前
11秒前
陈陈发布了新的文献求助10
13秒前
嘿嘿应助北北采纳,获得30
13秒前
Twonej给1111的求助进行了留言
13秒前
14秒前
英俊的铭应助111采纳,获得10
16秒前
Victor完成签到 ,获得积分10
18秒前
joxes发布了新的文献求助10
19秒前
19秒前
Simon_chat完成签到,获得积分10
21秒前
传奇3应助BK采纳,获得10
21秒前
锵锵锵应助安静初瑶采纳,获得10
22秒前
我是老大应助Lusteri采纳,获得10
22秒前
24秒前
25秒前
浮游应助djbj2022采纳,获得10
26秒前
30秒前
优秀笑柳完成签到,获得积分10
30秒前
丘比特应助trussie采纳,获得10
30秒前
Cherish完成签到,获得积分10
31秒前
111完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
Owen应助马上飞上宇宙采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638086
求助须知:如何正确求助?哪些是违规求助? 4744566
关于积分的说明 15001034
捐赠科研通 4796214
什么是DOI,文献DOI怎么找? 2562406
邀请新用户注册赠送积分活动 1521889
关于科研通互助平台的介绍 1481759