亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimation Performance for the Cubature Particle Filter under Nonlinear/Non-Gaussian Environments

集合卡尔曼滤波器 扩展卡尔曼滤波器 颗粒过滤器 数学 概率密度函数 高斯分布 卡尔曼滤波器 滤波器(信号处理) 辅助粒子过滤器 算法 无味变换 非线性系统 控制理论(社会学) 应用数学 数学优化 统计 计算机科学 人工智能 物理 量子力学 计算机视觉 控制(管理)
作者
Dah‐Jing Jwo,Chien-Hao Tseng
出处
期刊:Computers, materials & continua 卷期号:67 (2): 1555-1575
标识
DOI:10.32604/cmc.2021.014875
摘要

This paper evaluates the state estimation performance for processing nonlinear/non-Gaussian systems using the cubature particle filter (CPF), which is an estimation algorithm that combines the cubature Kalman filter (CKF) and the particle filter (PF). The CPF is essentially a realization of PF where the third-degree cubature rule based on numerical integration method is adopted to approximate the proposal distribution. It is beneficial where the CKF is used to generate the importance density function in the PF framework for effectively resolving the nonlinear/non-Gaussian problems. Based on the spherical-radial transformation to generate an even number of equally weighted cubature points, the CKF uses cubature points with the same weights through the spherical-radial integration rule and employs an analytical probability density function (pdf) to capture the mean and covariance of the posterior distribution using the total probability theorem and subsequently uses the measurement to update with Bayes’ rule. It is capable of acquiring a maximum a posteriori probability estimate of the nonlinear system, and thus the importance density function can be used to approximate the true posterior density distribution. In Bayesian filtering, the nonlinear filter performs well when all conditional densities are assumed Gaussian. When applied to the nonlinear/non-Gaussian distribution systems, the CPF algorithm can remarkably improve the estimation accuracy as compared to the other particle filter-based approaches, such as the extended particle filter (EPF), and unscented particle filter (UPF), and also the Kalman filter (KF)-type approaches, such as the extended Kalman filter (EKF), unscented Kalman filter (UKF) and CKF. Two illustrative examples are presented showing that the CPF achieves better performance as compared to the other approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MR完成签到,获得积分20
11秒前
桐桐应助MR采纳,获得10
21秒前
26秒前
ZaZa完成签到,获得积分10
31秒前
31秒前
张家宁发布了新的文献求助10
37秒前
着急的冬瓜完成签到 ,获得积分10
41秒前
1分钟前
可爱的函函应助小小K采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Suu发布了新的文献求助10
1分钟前
bkagyin应助烟消云散采纳,获得10
1分钟前
1分钟前
兔子完成签到,获得积分10
1分钟前
小小K发布了新的文献求助10
1分钟前
田様应助不可靠的黏菌采纳,获得10
1分钟前
打打应助zilhua采纳,获得10
1分钟前
CipherSage应助肥猪采纳,获得10
1分钟前
1分钟前
徐矜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
肥猪发布了新的文献求助10
1分钟前
烟消云散发布了新的文献求助10
1分钟前
Jiayouya完成签到,获得积分10
1分钟前
NexusExplorer应助石榴汁的书采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
肥猪完成签到,获得积分10
2分钟前
赘婿应助Zhao0112采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
陈毅发布了新的文献求助10
2分钟前
吴端完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
PP发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755264
求助须知:如何正确求助?哪些是违规求助? 5492899
关于积分的说明 15381023
捐赠科研通 4893471
什么是DOI,文献DOI怎么找? 2632093
邀请新用户注册赠送积分活动 1579947
关于科研通互助平台的介绍 1535765