Towards compound identification of synthetic opioids in nontargeted screening using machine learning techniques

人工智能 机器学习 计算机科学 鉴定(生物学) 贝叶斯定理 工作流程 朴素贝叶斯分类器 保留时间 分子描述符 人工神经网络 数据挖掘 支持向量机 化学 数量结构-活动关系 贝叶斯概率 数据库 植物 生物 色谱法
作者
Joshua Klingberg,Adam Cawley,Ronald Shimmon,Shanlin Fu
出处
期刊:Drug Testing and Analysis [Wiley]
卷期号:13 (5): 990-1000 被引量:5
标识
DOI:10.1002/dta.2976
摘要

The constant evolution of the illicit drug market makes the identification of unknown compounds problematic. Obtaining certified reference materials for a broad array of new analogues can be difficult and cost prohibitive. Machine learning provides a promising avenue to putatively identify a compound before confirmation against a standard. In this study, machine learning approaches were used to develop class prediction and retention time prediction models. The developed class prediction model used a naïve Bayes architecture to classify opioids as belonging to either the fentanyl analogues, AH series or U series, with an accuracy of 89.5%. The model was most accurate for the fentanyl analogues, most likely due to their greater number in the training data. This classification model can provide guidance to an analyst when determining a suspected structure. A retention time prediction model was also trained for a wide array of synthetic opioids. This model utilised Gaussian process regression to predict the retention time of analytes based on multiple generated molecular features with 79.7% of the samples predicted within ±0.1 min of their experimental retention time. Once the suspected structure of an unknown compound is determined, molecular features can be generated and input for the prediction model to compare with experimental retention time. The incorporation of machine learning prediction models into a compound identification workflow can assist putative identifications with greater confidence and ultimately save time and money in the purchase and/or production of superfluous certified reference materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包子完成签到,获得积分10
刚刚
1111完成签到,获得积分10
刚刚
1秒前
大天发布了新的文献求助10
1秒前
1秒前
一夜暴富完成签到 ,获得积分10
2秒前
2秒前
3秒前
纪煜祺完成签到,获得积分20
3秒前
4秒前
hzy6688应助111采纳,获得10
4秒前
Zippo完成签到,获得积分10
4秒前
科研通AI5应助xxxx采纳,获得10
5秒前
Raewenning发布了新的文献求助10
5秒前
5秒前
5秒前
在水一方应助乌拉拉拉拉采纳,获得10
5秒前
6秒前
Sylvia发布了新的文献求助10
6秒前
yufeng发布了新的文献求助10
7秒前
liuzhanyu发布了新的文献求助10
7秒前
8秒前
wayhome发布了新的文献求助10
9秒前
聪明凌柏发布了新的文献求助10
9秒前
浮游应助朴素的寻真采纳,获得10
9秒前
天真的白梦完成签到,获得积分10
10秒前
Owen应助若有人兮采纳,获得10
10秒前
汉堡包发布了新的文献求助10
10秒前
10秒前
10秒前
顾矜应助马小尚采纳,获得10
11秒前
11秒前
11秒前
12秒前
mjlink完成签到,获得积分10
12秒前
orixero应助ggbod采纳,获得10
13秒前
沈周发布了新的文献求助10
13秒前
科研通AI5应助NZYPS采纳,获得10
13秒前
田二亩完成签到,获得积分10
14秒前
CARL完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192038
求助须知:如何正确求助?哪些是违规求助? 4375147
关于积分的说明 13623731
捐赠科研通 4229284
什么是DOI,文献DOI怎么找? 2319783
邀请新用户注册赠送积分活动 1318375
关于科研通互助平台的介绍 1268503