Towards compound identification of synthetic opioids in nontargeted screening using machine learning techniques.

鉴定(生物学) 计算生物学
作者
Joshua Klingberg,Adam Cawley,Ronald Shimmon,Shanlin Fu
出处
期刊:Drug Testing and Analysis [Wiley]
卷期号:13 (5): 990-1000 被引量:2
标识
DOI:10.1002/dta.2976
摘要

The constant evolution of the illicit drug market makes the identification of unknown compounds problematic. Obtaining certified reference materials for a broad array of new analogues can be difficult and cost prohibitive. Machine learning provides a promising avenue to putatively identify a compound before confirmation against a standard. In this study, machine learning approaches were used to develop class prediction and retention time prediction models. The developed class prediction model used a naive Bayes architecture to classify opioids as belonging to either the fentanyl analogues, AH series or U series, with an accuracy of 89.5%. The model was most accurate for the fentanyl analogues, most likely due to their greater number in the training data. This classification model can provide guidance to an analyst when determining a suspected structure. A retention time prediction model was also trained for a wide array of synthetic opioids. This model utilised Gaussian process regression to predict the retention time of analytes based on multiple generated molecular features with 79.7% of the samples predicted within ±0.1 min of their experimental retention time. Once the suspected structure of an unknown compound is determined, molecular features can be generated and input for the prediction model to compare with experimental retention time. The incorporation of machine learning prediction models into a compound identification workflow can assist putative identifications with greater confidence and ultimately save time and money in the purchase and/or production of superfluous certified reference materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
很蓝的啦完成签到,获得积分10
刚刚
亚李发布了新的文献求助10
刚刚
刚刚
Mindray发布了新的文献求助10
刚刚
花花完成签到 ,获得积分10
1秒前
谦让的之柔关注了科研通微信公众号
2秒前
ly发布了新的文献求助10
2秒前
澄子完成签到 ,获得积分10
3秒前
4秒前
seedcui完成签到,获得积分10
5秒前
俊逸的香萱完成签到,获得积分10
6秒前
7秒前
含蓄锦程完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
小鲸鱼的云关注了科研通微信公众号
9秒前
9秒前
tony完成签到,获得积分10
9秒前
天天好心覃完成签到 ,获得积分10
10秒前
汉堡包应助laj采纳,获得10
10秒前
10秒前
11秒前
wang发布了新的文献求助10
12秒前
星辰发布了新的文献求助30
13秒前
zhuzhu发布了新的文献求助10
14秒前
LILY发布了新的文献求助50
14秒前
weiwei发布了新的文献求助10
14秒前
15秒前
SSSstriker完成签到,获得积分10
15秒前
16秒前
Mindray完成签到,获得积分10
17秒前
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得80
17秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
orixero应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
18秒前
加特林应助科研通管家采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3079288
求助须知:如何正确求助?哪些是违规求助? 2731907
关于积分的说明 7521504
捐赠科研通 2380646
什么是DOI,文献DOI怎么找? 1262460
科研通“疑难数据库(出版商)”最低求助积分说明 611947
版权声明 597414