Towards compound identification of synthetic opioids in nontargeted screening using machine learning techniques

人工智能 机器学习 计算机科学 鉴定(生物学) 贝叶斯定理 工作流程 朴素贝叶斯分类器 保留时间 分子描述符 人工神经网络 数据挖掘 支持向量机 化学 数量结构-活动关系 贝叶斯概率 数据库 植物 生物 色谱法
作者
Joshua Klingberg,Adam Cawley,Ronald Shimmon,Shanlin Fu
出处
期刊:Drug Testing and Analysis [Wiley]
卷期号:13 (5): 990-1000 被引量:5
标识
DOI:10.1002/dta.2976
摘要

The constant evolution of the illicit drug market makes the identification of unknown compounds problematic. Obtaining certified reference materials for a broad array of new analogues can be difficult and cost prohibitive. Machine learning provides a promising avenue to putatively identify a compound before confirmation against a standard. In this study, machine learning approaches were used to develop class prediction and retention time prediction models. The developed class prediction model used a naïve Bayes architecture to classify opioids as belonging to either the fentanyl analogues, AH series or U series, with an accuracy of 89.5%. The model was most accurate for the fentanyl analogues, most likely due to their greater number in the training data. This classification model can provide guidance to an analyst when determining a suspected structure. A retention time prediction model was also trained for a wide array of synthetic opioids. This model utilised Gaussian process regression to predict the retention time of analytes based on multiple generated molecular features with 79.7% of the samples predicted within ±0.1 min of their experimental retention time. Once the suspected structure of an unknown compound is determined, molecular features can be generated and input for the prediction model to compare with experimental retention time. The incorporation of machine learning prediction models into a compound identification workflow can assist putative identifications with greater confidence and ultimately save time and money in the purchase and/or production of superfluous certified reference materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助77采纳,获得10
刚刚
若溪完成签到,获得积分10
刚刚
2秒前
一步一个脚印完成签到,获得积分10
2秒前
桐桐应助达到采纳,获得10
2秒前
3秒前
3秒前
若溪发布了新的文献求助10
3秒前
4秒前
稳重无招完成签到,获得积分10
4秒前
油炸丸子完成签到,获得积分10
4秒前
一二三四五完成签到,获得积分10
4秒前
jenningseastera应助果实采纳,获得10
5秒前
蒲公英完成签到,获得积分10
5秒前
大傻春发布了新的文献求助10
5秒前
zygclwl发布了新的文献求助10
6秒前
6秒前
6秒前
板栗完成签到,获得积分10
7秒前
卿相白衣完成签到,获得积分10
7秒前
敏感代云完成签到,获得积分10
8秒前
8秒前
552497发布了新的文献求助10
8秒前
8秒前
9秒前
温暖焱发布了新的文献求助10
9秒前
油炸丸子发布了新的文献求助10
9秒前
9秒前
top完成签到,获得积分10
9秒前
hoijuon发布了新的文献求助10
10秒前
10秒前
小帅完成签到,获得积分10
10秒前
林子觽发布了新的文献求助10
11秒前
Justtry发布了新的文献求助10
12秒前
不安姿完成签到 ,获得积分10
12秒前
12秒前
涵泽发布了新的文献求助10
12秒前
魔法师完成签到,获得积分0
12秒前
懂得珍惜发布了新的文献求助10
13秒前
缥缈斌发布了新的文献求助10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186