亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards compound identification of synthetic opioids in nontargeted screening using machine learning techniques

人工智能 机器学习 计算机科学 鉴定(生物学) 贝叶斯定理 工作流程 朴素贝叶斯分类器 保留时间 分子描述符 人工神经网络 数据挖掘 支持向量机 化学 数量结构-活动关系 贝叶斯概率 数据库 植物 生物 色谱法
作者
Joshua Klingberg,Adam Cawley,Ronald Shimmon,Shanlin Fu
出处
期刊:Drug Testing and Analysis [Wiley]
卷期号:13 (5): 990-1000 被引量:5
标识
DOI:10.1002/dta.2976
摘要

The constant evolution of the illicit drug market makes the identification of unknown compounds problematic. Obtaining certified reference materials for a broad array of new analogues can be difficult and cost prohibitive. Machine learning provides a promising avenue to putatively identify a compound before confirmation against a standard. In this study, machine learning approaches were used to develop class prediction and retention time prediction models. The developed class prediction model used a naïve Bayes architecture to classify opioids as belonging to either the fentanyl analogues, AH series or U series, with an accuracy of 89.5%. The model was most accurate for the fentanyl analogues, most likely due to their greater number in the training data. This classification model can provide guidance to an analyst when determining a suspected structure. A retention time prediction model was also trained for a wide array of synthetic opioids. This model utilised Gaussian process regression to predict the retention time of analytes based on multiple generated molecular features with 79.7% of the samples predicted within ±0.1 min of their experimental retention time. Once the suspected structure of an unknown compound is determined, molecular features can be generated and input for the prediction model to compare with experimental retention time. The incorporation of machine learning prediction models into a compound identification workflow can assist putative identifications with greater confidence and ultimately save time and money in the purchase and/or production of superfluous certified reference materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
研友_ZbP41L完成签到 ,获得积分10
16秒前
zhao完成签到,获得积分10
37秒前
charih完成签到 ,获得积分10
53秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
FashionBoy应助白云四季采纳,获得10
1分钟前
jyzzz应助张浩采纳,获得10
2分钟前
2分钟前
2分钟前
wangzai发布了新的文献求助10
2分钟前
赘婿应助堪冥采纳,获得10
2分钟前
wangzai完成签到,获得积分10
2分钟前
荷兰香猪完成签到,获得积分10
2分钟前
2分钟前
Wei发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
英姑应助科研通管家采纳,获得10
3分钟前
Tobby发布了新的文献求助20
3分钟前
时间煮雨我煮鱼完成签到,获得积分10
3分钟前
Tobby完成签到,获得积分10
3分钟前
Voyager发布了新的文献求助10
3分钟前
4分钟前
咸鱼lmye发布了新的文献求助10
4分钟前
4分钟前
咸鱼lmye完成签到 ,获得积分20
4分钟前
wyz完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
ding应助科研通管家采纳,获得10
5分钟前
Voyager发布了新的文献求助50
5分钟前
5分钟前
5分钟前
领导范儿应助老橘子采纳,获得30
6分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746922
求助须知:如何正确求助?哪些是违规求助? 5440291
关于积分的说明 15356030
捐赠科研通 4886949
什么是DOI,文献DOI怎么找? 2627491
邀请新用户注册赠送积分活动 1575931
关于科研通互助平台的介绍 1532729