Soil erosion modeling using erosion pins and artificial neural networks

腐蚀 环境科学 水文学(农业) 植被(病理学) 飞溅 数字高程模型 土壤科学 WEPP公司 水土保持 天蓬 遥感 地质学 岩土工程 地貌学 生态学 地理 气象学 农业 病理 生物 医学
作者
Vahid Gholami,Hossein Sahour,Mohammad Ali Hadian Amri
出处
期刊:Catena [Elsevier]
卷期号:196: 104902-104902 被引量:68
标识
DOI:10.1016/j.catena.2020.104902
摘要

Assessment of soil erosion is crucial for any long-term soil conservation plan. Traditional in-situ measurements provide a precise amount of erosion rate; however, the procedure is costly and time-consuming when applied over an extensive area. This study aimed to investigate the use of erosion pins and artificial neural networks (ANNs) to assess the spatial distribution of annual soil erosion rates in the mountainous areas of the north of Iran. First, annual surface erosion and splash erosion were measured using two types of erosion pins. Next, the variables affecting soil erosion (vegetation canopy, the shape of slope, slope gradient, slope length, and soil properties) were identified and estimated through field studies and analysis of a digital elevation model (DEM) and the data set were divided into three subsets of training, cross-validation, and testing. Seven artificial neural network algorithms were used and evaluated to estimate the annual soil erosion rates for the areas without recorded erosion data. Finally, the modeled values were mapped in GIS, and the longitudinal profiles of soil erosion were extracted. Findings showed that (1) Consideration should be given to the generalized feed forward (GFF) network, given the high accuracy rate (NMSE:0.1; R-sqr:0.9) compared to other tested ANN algorithms. (2) Vegetation canopy was found to be the most significant variable in annual soil erosion rate (R: −0.75 to −0.85) compared to other input variables. And (3) Annual measurements of erosion pins revealed that the splash erosion is higher (contributing 62 percent to total erosion) compared to surface runoff erosion (contributing 38 percent to total erosion).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
passion完成签到,获得积分10
刚刚
1秒前
minya完成签到,获得积分10
2秒前
Emma完成签到,获得积分10
3秒前
沐槿发布了新的文献求助10
3秒前
小眼儿完成签到,获得积分10
3秒前
暮夏七完成签到,获得积分10
3秒前
4秒前
keyanbaicai发布了新的文献求助10
4秒前
晨曦完成签到,获得积分10
4秒前
4秒前
文文完成签到,获得积分10
5秒前
彭于晏应助Zhjie126采纳,获得10
5秒前
井野浮应助ylq采纳,获得10
7秒前
clarklkq完成签到,获得积分10
7秒前
Estella完成签到,获得积分10
8秒前
8秒前
xiaogang127完成签到 ,获得积分10
9秒前
科目三应助TheMonster采纳,获得10
10秒前
沐槿完成签到,获得积分10
10秒前
11秒前
噢呀完成签到,获得积分10
11秒前
polarbear发布了新的文献求助10
12秒前
yang完成签到,获得积分10
13秒前
不冰淇淋完成签到,获得积分10
13秒前
YBH发布了新的文献求助10
13秒前
汉堡包应助西瓜采纳,获得10
14秒前
科研通AI2S应助跳跃的卿采纳,获得10
14秒前
宜醉宜游宜睡应助蓝胖子采纳,获得10
14秒前
dtjvb发布了新的文献求助10
15秒前
噢呀发布了新的文献求助10
16秒前
16秒前
wwpzhende6完成签到,获得积分10
17秒前
17秒前
许七安发布了新的文献求助20
17秒前
19秒前
希望天下0贩的0应助oh采纳,获得10
19秒前
许乐发布了新的文献求助10
20秒前
LUAN完成签到,获得积分10
20秒前
桐桐应助潇洒映冬采纳,获得10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231987
求助须知:如何正确求助?哪些是违规求助? 2878991
关于积分的说明 8208546
捐赠科研通 2546450
什么是DOI,文献DOI怎么找? 1375985
科研通“疑难数据库(出版商)”最低求助积分说明 647507
邀请新用户注册赠送积分活动 622675