Structural dynamics simulation using a novel physics-guided machine learning method

计算机科学 一般化 人工神经网络 人工智能 循环神经网络 机器学习 动力学仿真 实验数据 物理 数学 量子力学 统计 数学分析
作者
Yang Yu,Houpu Yao,Yongming Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:96: 103947-103947 被引量:85
标识
DOI:10.1016/j.engappai.2020.103947
摘要

Physics-guided machine learning (ML) is an emerging paradigm that combines both data-driven ML models and physics-based models together to fully take advantage of the data discovery ability of ML without losing the valuable physics/domain knowledge. This paper proposes a novel physics-guided ML method based on recurrent neural network (RNN) and multilayer perceptron (MLP) for structural dynamics simulation. The key idea is to integrate the underlying physics of structural dynamics into data-enabled ML models to ‘guide’ the training and prediction of ML models. First, structural dynamics formulation and the use of data-driven RNN and MLP for modeling dynamical systems are briefly reviewed, which leads to the development of the proposed physics-guided ML model. Physics-guided ML model contains physics-based layers to encode the known physics and data-driven layers to approximate the unknown relationships. Thus, the data-driven RNN and MLP are augmented with existing physics knowledge for better performance in simulations. Following this, several numerical case studies for structural dynamics are presented to demonstrate the proposed methodology. It is observed that: (1) compared with purely data-driven ML method, the proposed physics-guided ML method has better generalization ability and reduced training costs; (2) compared with physics-based modeling, the proposed method has improved computational efficiency and can handle partially unknown physics. Finally, conclusions and future works are presented based on the proposed study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
legend完成签到,获得积分10
1秒前
猪猪hero发布了新的文献求助10
1秒前
善学以致用应助Scidog采纳,获得10
1秒前
白泽完成签到 ,获得积分10
2秒前
我是老大应助乐乱采纳,获得10
2秒前
张宁波完成签到,获得积分10
2秒前
酷波er应助www采纳,获得10
2秒前
XXF发布了新的文献求助10
3秒前
赤邪发布了新的文献求助10
3秒前
石头发布了新的文献求助10
3秒前
4秒前
Ricky完成签到,获得积分10
4秒前
上官若男应助luuuuuu采纳,获得10
4秒前
杨永亮完成签到,获得积分10
5秒前
5秒前
袁粪到了完成签到 ,获得积分10
5秒前
5秒前
异烟肼完成签到 ,获得积分10
5秒前
Jenny应助通~采纳,获得10
5秒前
yory完成签到 ,获得积分10
6秒前
6秒前
远航完成签到 ,获得积分10
6秒前
6秒前
彭于晏应助Rrr采纳,获得10
6秒前
卓然发布了新的文献求助10
6秒前
精明的中蓝完成签到,获得积分10
7秒前
66应助小钻风采纳,获得10
7秒前
7秒前
领导范儿应助星星采纳,获得10
8秒前
汉堡包应助shotgod采纳,获得10
8秒前
如寄完成签到 ,获得积分10
8秒前
顾闭月发布了新的文献求助10
9秒前
研友_VZG7GZ应助石头采纳,获得10
9秒前
有益发布了新的文献求助10
10秒前
xibei完成签到 ,获得积分10
10秒前
11秒前
丘比特应助爱吃肉的猪采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794