Structural dynamics simulation using a novel physics-guided machine learning method

计算机科学 一般化 人工神经网络 人工智能 循环神经网络 机器学习 动力学仿真 实验数据 物理 数学 量子力学 统计 数学分析
作者
Yang Yu,Houpu Yao,Yongming Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:96: 103947-103947 被引量:85
标识
DOI:10.1016/j.engappai.2020.103947
摘要

Physics-guided machine learning (ML) is an emerging paradigm that combines both data-driven ML models and physics-based models together to fully take advantage of the data discovery ability of ML without losing the valuable physics/domain knowledge. This paper proposes a novel physics-guided ML method based on recurrent neural network (RNN) and multilayer perceptron (MLP) for structural dynamics simulation. The key idea is to integrate the underlying physics of structural dynamics into data-enabled ML models to ‘guide’ the training and prediction of ML models. First, structural dynamics formulation and the use of data-driven RNN and MLP for modeling dynamical systems are briefly reviewed, which leads to the development of the proposed physics-guided ML model. Physics-guided ML model contains physics-based layers to encode the known physics and data-driven layers to approximate the unknown relationships. Thus, the data-driven RNN and MLP are augmented with existing physics knowledge for better performance in simulations. Following this, several numerical case studies for structural dynamics are presented to demonstrate the proposed methodology. It is observed that: (1) compared with purely data-driven ML method, the proposed physics-guided ML method has better generalization ability and reduced training costs; (2) compared with physics-based modeling, the proposed method has improved computational efficiency and can handle partially unknown physics. Finally, conclusions and future works are presented based on the proposed study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
益生菌发布了新的文献求助10
刚刚
踏实的酸奶完成签到,获得积分10
刚刚
Coldpal完成签到,获得积分10
刚刚
虎啊虎啊发布了新的文献求助10
刚刚
ljl完成签到,获得积分10
刚刚
lalala完成签到,获得积分20
刚刚
ybb完成签到,获得积分10
刚刚
球球了完成签到,获得积分10
1秒前
青易发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
小海发布了新的文献求助10
2秒前
joysa完成签到,获得积分10
3秒前
Jasper应助余生采纳,获得10
3秒前
yiyi完成签到,获得积分10
3秒前
Georges-09完成签到,获得积分10
3秒前
爱因斯宣发布了新的文献求助10
3秒前
谦让的莆完成签到 ,获得积分10
4秒前
4秒前
苏silence发布了新的文献求助10
5秒前
5秒前
科研小土豆完成签到,获得积分10
7秒前
小金鱼儿完成签到,获得积分10
7秒前
Danielle完成签到,获得积分10
7秒前
Paddi完成签到,获得积分10
8秒前
8秒前
Sxq完成签到,获得积分10
8秒前
liuhuo完成签到,获得积分10
8秒前
虎啊虎啊完成签到,获得积分10
8秒前
小海完成签到,获得积分10
9秒前
思源应助任冰冰采纳,获得30
9秒前
完美的凡灵完成签到,获得积分10
9秒前
10秒前
4564321发布了新的文献求助10
10秒前
11秒前
草莓布丁发布了新的文献求助10
11秒前
科目三应助徐佳达采纳,获得10
12秒前
传奇3应助香菜采纳,获得10
12秒前
盒子先生完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582