Structural dynamics simulation using a novel physics-guided machine learning method

计算机科学 一般化 人工神经网络 人工智能 循环神经网络 机器学习 动力学仿真 实验数据 物理 数学 量子力学 统计 数学分析
作者
Yang Yu,Houpu Yao,Yongming Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:96: 103947-103947 被引量:85
标识
DOI:10.1016/j.engappai.2020.103947
摘要

Physics-guided machine learning (ML) is an emerging paradigm that combines both data-driven ML models and physics-based models together to fully take advantage of the data discovery ability of ML without losing the valuable physics/domain knowledge. This paper proposes a novel physics-guided ML method based on recurrent neural network (RNN) and multilayer perceptron (MLP) for structural dynamics simulation. The key idea is to integrate the underlying physics of structural dynamics into data-enabled ML models to ‘guide’ the training and prediction of ML models. First, structural dynamics formulation and the use of data-driven RNN and MLP for modeling dynamical systems are briefly reviewed, which leads to the development of the proposed physics-guided ML model. Physics-guided ML model contains physics-based layers to encode the known physics and data-driven layers to approximate the unknown relationships. Thus, the data-driven RNN and MLP are augmented with existing physics knowledge for better performance in simulations. Following this, several numerical case studies for structural dynamics are presented to demonstrate the proposed methodology. It is observed that: (1) compared with purely data-driven ML method, the proposed physics-guided ML method has better generalization ability and reduced training costs; (2) compared with physics-based modeling, the proposed method has improved computational efficiency and can handle partially unknown physics. Finally, conclusions and future works are presented based on the proposed study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漠雨寒灯发布了新的文献求助10
4秒前
合适的平安完成签到,获得积分10
5秒前
5秒前
7秒前
kk发布了新的文献求助10
8秒前
落落完成签到,获得积分20
9秒前
马子妍发布了新的文献求助10
11秒前
11秒前
噗噗完成签到,获得积分10
13秒前
kk完成签到,获得积分20
14秒前
Ryan完成签到,获得积分10
17秒前
许垲锋发布了新的文献求助10
18秒前
吴YB完成签到,获得积分10
18秒前
WJ完成签到,获得积分10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
spc68应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
21秒前
21秒前
李健应助angelinazh采纳,获得10
21秒前
科研通AI6应助牙ya采纳,获得10
21秒前
24秒前
英姑应助西尔多采纳,获得10
24秒前
Somnolence咩完成签到,获得积分10
26秒前
26秒前
123完成签到,获得积分10
27秒前
jason发布了新的文献求助30
27秒前
28秒前
29秒前
善学以致用应助123采纳,获得10
31秒前
啦啦啦完成签到 ,获得积分10
33秒前
代传芬发布了新的文献求助10
33秒前
33秒前
zhoushishan发布了新的文献求助10
35秒前
35秒前
SciGPT应助roro熊采纳,获得10
37秒前
卤肉饭与石榴汁完成签到,获得积分10
38秒前
科目三应助revour采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565514
求助须知:如何正确求助?哪些是违规求助? 4650580
关于积分的说明 14691851
捐赠科研通 4592480
什么是DOI,文献DOI怎么找? 2519651
邀请新用户注册赠送积分活动 1492028
关于科研通互助平台的介绍 1463244