Structural dynamics simulation using a novel physics-guided machine learning method

计算机科学 一般化 人工神经网络 人工智能 循环神经网络 机器学习 动力学仿真 实验数据 物理 数学 量子力学 统计 数学分析
作者
Yang Yu,Houpu Yao,Yongming Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:96: 103947-103947 被引量:80
标识
DOI:10.1016/j.engappai.2020.103947
摘要

Physics-guided machine learning (ML) is an emerging paradigm that combines both data-driven ML models and physics-based models together to fully take advantage of the data discovery ability of ML without losing the valuable physics/domain knowledge. This paper proposes a novel physics-guided ML method based on recurrent neural network (RNN) and multilayer perceptron (MLP) for structural dynamics simulation. The key idea is to integrate the underlying physics of structural dynamics into data-enabled ML models to ‘guide’ the training and prediction of ML models. First, structural dynamics formulation and the use of data-driven RNN and MLP for modeling dynamical systems are briefly reviewed, which leads to the development of the proposed physics-guided ML model. Physics-guided ML model contains physics-based layers to encode the known physics and data-driven layers to approximate the unknown relationships. Thus, the data-driven RNN and MLP are augmented with existing physics knowledge for better performance in simulations. Following this, several numerical case studies for structural dynamics are presented to demonstrate the proposed methodology. It is observed that: (1) compared with purely data-driven ML method, the proposed physics-guided ML method has better generalization ability and reduced training costs; (2) compared with physics-based modeling, the proposed method has improved computational efficiency and can handle partially unknown physics. Finally, conclusions and future works are presented based on the proposed study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助满意紫菜采纳,获得10
刚刚
刚刚
高兴的易形完成签到 ,获得积分10
刚刚
坚强亦丝应助上好佳采纳,获得10
刚刚
小马完成签到 ,获得积分10
刚刚
大个应助冷傲的如柏采纳,获得10
刚刚
雨荷完成签到,获得积分10
刚刚
浅尝离白应助任性的千柳采纳,获得30
1秒前
陈橙完成签到,获得积分20
1秒前
1秒前
nz完成签到,获得积分10
2秒前
2秒前
3秒前
till完成签到,获得积分20
3秒前
自由从筠发布了新的文献求助10
4秒前
南方姑娘在南方完成签到,获得积分10
4秒前
王淳完成签到 ,获得积分10
4秒前
4秒前
嗒嗒完成签到,获得积分10
4秒前
5秒前
panpan完成签到 ,获得积分20
6秒前
研途顺利发布了新的文献求助10
6秒前
drwlr完成签到,获得积分10
6秒前
05完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
bimiracle完成签到,获得积分10
8秒前
完美世界应助负责的雪柳采纳,获得30
8秒前
8秒前
任性的千柳完成签到,获得积分20
9秒前
Electra发布了新的文献求助10
9秒前
1111完成签到,获得积分10
9秒前
9秒前
静静发布了新的文献求助10
9秒前
9秒前
111完成签到,获得积分10
10秒前
廖天佑完成签到,获得积分10
10秒前
小石头完成签到,获得积分10
10秒前
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147351
求助须知:如何正确求助?哪些是违规求助? 2798580
关于积分的说明 7829767
捐赠科研通 2455324
什么是DOI,文献DOI怎么找? 1306666
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567