Unsupervised Pansharpening Based on Self-Attention Mechanism

亚像素渲染 全色胶片 计算机科学 多光谱图像 像素 人工智能 图像分辨率 模式识别(心理学) 增采样 计算机视觉 遥感 图像(数学) 地质学
作者
Ying Qu,Razieh Kaviani Baghbaderani,Hairong Qi,Chiman Kwan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (4): 3192-3208 被引量:41
标识
DOI:10.1109/tgrs.2020.3009207
摘要

Pansharpening is to fuse a multispectral image (MSI) of low-spatial-resolution (LR) but rich spectral characteristics with a panchromatic image (PAN) of high spatial resolution (HR) but poor spectral characteristics. Traditional methods usually inject the extracted high-frequency details from PAN into the upsampled MSI. Recent deep learning endeavors are mostly supervised assuming that the HR MSI is available, which is unrealistic especially for satellite images. Nonetheless, these methods could not fully exploit the rich spectral characteristics in the MSI. Due to the wide existence of mixed pixels in satellite images where each pixel tends to cover more than one constituent material, pansharpening at the subpixel level becomes essential. In this article, we propose an unsupervised pansharpening (UP) method in a deep-learning framework to address the abovementioned challenges based on the self-attention mechanism (SAM), referred to as UP-SAM. The contribution of this article is threefold. First, the SAM is proposed where the spatial varying detail extraction and injection functions are estimated according to the attention representations indicating spectral characteristics of the MSI with subpixel accuracy. Second, such attention representations are derived from mixed pixels with the proposed stacked attention network powered with a stick-breaking structure to meet the physical constraints of mixed pixel formulations. Third, the detail extraction and injection functions are spatial varying based on the attention representations, which largely improves the reconstruction accuracy. Extensive experimental results demonstrate that the proposed approach is able to reconstruct sharper MSI of different types, with more details and less spectral distortion compared with the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮诺言发布了新的文献求助10
1秒前
1秒前
SYLH应助hhh采纳,获得10
1秒前
364zdk完成签到 ,获得积分10
2秒前
小小完成签到,获得积分10
2秒前
研究员2发布了新的文献求助40
4秒前
H_123发布了新的文献求助10
4秒前
不过六级不改名完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
酷酷绿兰发布了新的文献求助10
6秒前
7秒前
10秒前
11秒前
11秒前
12秒前
觅海完成签到,获得积分10
13秒前
fanfan发布了新的文献求助10
14秒前
16秒前
俊杰发布了新的文献求助30
17秒前
SYLH应助hhh采纳,获得10
17秒前
觅海发布了新的文献求助10
18秒前
21秒前
无敌小汐完成签到,获得积分10
21秒前
毛蕊发布了新的文献求助10
22秒前
hlx关注了科研通微信公众号
24秒前
24秒前
25秒前
兴奋的小虾米完成签到,获得积分10
25秒前
28秒前
MingqingFang发布了新的文献求助10
28秒前
28秒前
爆米花应助科研通管家采纳,获得10
29秒前
传奇3应助科研通管家采纳,获得10
29秒前
大个应助科研通管家采纳,获得10
29秒前
英俊的铭应助科研通管家采纳,获得10
29秒前
传奇3应助科研通管家采纳,获得10
29秒前
猪猪hero应助科研通管家采纳,获得10
29秒前
完美世界应助科研通管家采纳,获得10
29秒前
猪猪hero应助科研通管家采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959245
求助须知:如何正确求助?哪些是违规求助? 3505545
关于积分的说明 11124398
捐赠科研通 3237291
什么是DOI,文献DOI怎么找? 1789026
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824