Unsupervised Pansharpening Based on Self-Attention Mechanism

亚像素渲染 全色胶片 计算机科学 多光谱图像 像素 人工智能 图像分辨率 模式识别(心理学) 增采样 计算机视觉 遥感 图像(数学) 地质学
作者
Ying Qu,Razieh Kaviani Baghbaderani,Hairong Qi,Chiman Kwan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (4): 3192-3208 被引量:41
标识
DOI:10.1109/tgrs.2020.3009207
摘要

Pansharpening is to fuse a multispectral image (MSI) of low-spatial-resolution (LR) but rich spectral characteristics with a panchromatic image (PAN) of high spatial resolution (HR) but poor spectral characteristics. Traditional methods usually inject the extracted high-frequency details from PAN into the upsampled MSI. Recent deep learning endeavors are mostly supervised assuming that the HR MSI is available, which is unrealistic especially for satellite images. Nonetheless, these methods could not fully exploit the rich spectral characteristics in the MSI. Due to the wide existence of mixed pixels in satellite images where each pixel tends to cover more than one constituent material, pansharpening at the subpixel level becomes essential. In this article, we propose an unsupervised pansharpening (UP) method in a deep-learning framework to address the abovementioned challenges based on the self-attention mechanism (SAM), referred to as UP-SAM. The contribution of this article is threefold. First, the SAM is proposed where the spatial varying detail extraction and injection functions are estimated according to the attention representations indicating spectral characteristics of the MSI with subpixel accuracy. Second, such attention representations are derived from mixed pixels with the proposed stacked attention network powered with a stick-breaking structure to meet the physical constraints of mixed pixel formulations. Third, the detail extraction and injection functions are spatial varying based on the attention representations, which largely improves the reconstruction accuracy. Extensive experimental results demonstrate that the proposed approach is able to reconstruct sharper MSI of different types, with more details and less spectral distortion compared with the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhui发布了新的文献求助10
刚刚
通达完成签到,获得积分10
1秒前
FashionBoy应助猪猪hero采纳,获得10
1秒前
jy发布了新的文献求助10
1秒前
祥云完成签到,获得积分10
1秒前
无敌鱼完成签到,获得积分10
2秒前
ffu完成签到 ,获得积分10
2秒前
天天快乐应助好的采纳,获得10
2秒前
2秒前
香蕉觅云应助科研小白花采纳,获得10
2秒前
18746005898发布了新的文献求助10
3秒前
科研通AI5应助fanfan44390采纳,获得10
3秒前
3秒前
3秒前
小刺猬完成签到,获得积分10
3秒前
小庄发布了新的文献求助10
3秒前
唐人雄发布了新的文献求助10
4秒前
英姑应助Khr1stINK采纳,获得10
4秒前
爆米花应助甜筒采纳,获得10
4秒前
Gang完成签到,获得积分10
4秒前
调研昵称发布了新的文献求助10
5秒前
Hello应助潇洒的青采纳,获得10
5秒前
5秒前
共享精神应助长孙归尘采纳,获得10
5秒前
6秒前
Evan123发布了新的文献求助10
6秒前
7秒前
xctdyl1992发布了新的文献求助10
7秒前
7秒前
Su完成签到,获得积分10
7秒前
俗丨完成签到,获得积分10
8秒前
科研通AI5应助海底落日采纳,获得30
8秒前
8秒前
CodeCraft应助纯真忆安采纳,获得10
8秒前
顺顺发布了新的文献求助10
8秒前
8秒前
9秒前
nan完成签到,获得积分10
9秒前
9秒前
自信的叫兽完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794