亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Pansharpening Based on Self-Attention Mechanism

亚像素渲染 全色胶片 计算机科学 多光谱图像 像素 人工智能 图像分辨率 模式识别(心理学) 增采样 计算机视觉 遥感 图像(数学) 地质学
作者
Ying Qu,Razieh Kaviani Baghbaderani,Hairong Qi,Chiman Kwan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (4): 3192-3208 被引量:41
标识
DOI:10.1109/tgrs.2020.3009207
摘要

Pansharpening is to fuse a multispectral image (MSI) of low-spatial-resolution (LR) but rich spectral characteristics with a panchromatic image (PAN) of high spatial resolution (HR) but poor spectral characteristics. Traditional methods usually inject the extracted high-frequency details from PAN into the upsampled MSI. Recent deep learning endeavors are mostly supervised assuming that the HR MSI is available, which is unrealistic especially for satellite images. Nonetheless, these methods could not fully exploit the rich spectral characteristics in the MSI. Due to the wide existence of mixed pixels in satellite images where each pixel tends to cover more than one constituent material, pansharpening at the subpixel level becomes essential. In this article, we propose an unsupervised pansharpening (UP) method in a deep-learning framework to address the abovementioned challenges based on the self-attention mechanism (SAM), referred to as UP-SAM. The contribution of this article is threefold. First, the SAM is proposed where the spatial varying detail extraction and injection functions are estimated according to the attention representations indicating spectral characteristics of the MSI with subpixel accuracy. Second, such attention representations are derived from mixed pixels with the proposed stacked attention network powered with a stick-breaking structure to meet the physical constraints of mixed pixel formulations. Third, the detail extraction and injection functions are spatial varying based on the attention representations, which largely improves the reconstruction accuracy. Extensive experimental results demonstrate that the proposed approach is able to reconstruct sharper MSI of different types, with more details and less spectral distortion compared with the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
西安浴日光能赵炜完成签到,获得积分10
11秒前
Yoanna应助科研通管家采纳,获得20
13秒前
21秒前
39秒前
量子星尘发布了新的文献求助10
41秒前
53秒前
嘻嘻完成签到,获得积分10
1分钟前
1分钟前
2分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
慕青应助SiboN采纳,获得10
3分钟前
drirshad完成签到,获得积分10
3分钟前
numagok完成签到,获得积分10
4分钟前
ceeray23发布了新的文献求助10
5分钟前
陶醉的蜜蜂完成签到,获得积分10
5分钟前
vitamin完成签到 ,获得积分10
5分钟前
Yini应助Omni采纳,获得10
6分钟前
花落无声完成签到 ,获得积分10
7分钟前
瑾沫流年发布了新的文献求助100
7分钟前
Axs完成签到,获得积分10
7分钟前
科研通AI6应助阿米尔盼盼采纳,获得10
7分钟前
7分钟前
SiboN发布了新的文献求助10
8分钟前
8分钟前
SiboN完成签到,获得积分10
8分钟前
9分钟前
量子星尘发布了新的文献求助10
9分钟前
Hello应助313采纳,获得10
9分钟前
9分钟前
313发布了新的文献求助10
9分钟前
Lucky.完成签到 ,获得积分0
9分钟前
Yini应助313采纳,获得10
9分钟前
9分钟前
bkagyin应助313采纳,获得10
9分钟前
9分钟前
10分钟前
10分钟前
汉堡包应助XiangMo采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957939
求助须知:如何正确求助?哪些是违规求助? 4219149
关于积分的说明 13133252
捐赠科研通 4002241
什么是DOI,文献DOI怎么找? 2190252
邀请新用户注册赠送积分活动 1205006
关于科研通互助平台的介绍 1116625