Unsupervised Pansharpening Based on Self-Attention Mechanism

亚像素渲染 全色胶片 计算机科学 多光谱图像 像素 人工智能 图像分辨率 模式识别(心理学) 增采样 计算机视觉 遥感 图像(数学) 地质学
作者
Ying Qu,Razieh Kaviani Baghbaderani,Hairong Qi,Chiman Kwan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (4): 3192-3208 被引量:41
标识
DOI:10.1109/tgrs.2020.3009207
摘要

Pansharpening is to fuse a multispectral image (MSI) of low-spatial-resolution (LR) but rich spectral characteristics with a panchromatic image (PAN) of high spatial resolution (HR) but poor spectral characteristics. Traditional methods usually inject the extracted high-frequency details from PAN into the upsampled MSI. Recent deep learning endeavors are mostly supervised assuming that the HR MSI is available, which is unrealistic especially for satellite images. Nonetheless, these methods could not fully exploit the rich spectral characteristics in the MSI. Due to the wide existence of mixed pixels in satellite images where each pixel tends to cover more than one constituent material, pansharpening at the subpixel level becomes essential. In this article, we propose an unsupervised pansharpening (UP) method in a deep-learning framework to address the abovementioned challenges based on the self-attention mechanism (SAM), referred to as UP-SAM. The contribution of this article is threefold. First, the SAM is proposed where the spatial varying detail extraction and injection functions are estimated according to the attention representations indicating spectral characteristics of the MSI with subpixel accuracy. Second, such attention representations are derived from mixed pixels with the proposed stacked attention network powered with a stick-breaking structure to meet the physical constraints of mixed pixel formulations. Third, the detail extraction and injection functions are spatial varying based on the attention representations, which largely improves the reconstruction accuracy. Extensive experimental results demonstrate that the proposed approach is able to reconstruct sharper MSI of different types, with more details and less spectral distortion compared with the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
布丁果冻发布了新的文献求助10
2秒前
吴昊东发布了新的文献求助10
2秒前
吾皇完成签到 ,获得积分10
4秒前
小凯同学完成签到,获得积分10
4秒前
黄沙漠完成签到 ,获得积分10
4秒前
cocolu应助萨科采纳,获得10
5秒前
sissi225应助萨科采纳,获得10
5秒前
赘婿应助萨科采纳,获得10
5秒前
5秒前
爱笑的访梦完成签到,获得积分10
8秒前
jessie完成签到,获得积分10
8秒前
小小给小小的求助进行了留言
9秒前
宋宋发布了新的文献求助10
10秒前
彭于彦祖应助肽研员采纳,获得30
10秒前
希望天下0贩的0应助yls采纳,获得10
11秒前
14秒前
17秒前
麦子完成签到,获得积分10
18秒前
尉迟晓筠发布了新的文献求助10
22秒前
肽研员给肽研员的求助进行了留言
24秒前
宋宋完成签到,获得积分10
25秒前
A.y.w完成签到,获得积分10
29秒前
29秒前
尉迟晓筠完成签到,获得积分10
30秒前
Swiftie完成签到 ,获得积分10
32秒前
光亮的姝完成签到,获得积分10
32秒前
33秒前
简单男孩完成签到,获得积分10
34秒前
35秒前
35秒前
漂亮幻莲完成签到,获得积分10
35秒前
七月完成签到,获得积分10
37秒前
37秒前
勤奋板凳发布了新的文献求助10
39秒前
枯夏发布了新的文献求助10
40秒前
41秒前
42秒前
酱豆豆完成签到 ,获得积分10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299813
求助须知:如何正确求助?哪些是违规求助? 2934662
关于积分的说明 8470165
捐赠科研通 2608229
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574