A Multipopulation Evolutionary Algorithm for Solving Large-Scale Multimodal Multiobjective Optimization Problems

数学优化 计算机科学 进化算法 多目标优化 比例(比率) 进化计算 数学 人工智能 算法 物理 量子力学
作者
Ye Tian,Ruchen Liu,Xingyi Zhang,Haiping Ma,Kay Chen Tan,Yaochu Jin
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:25 (3): 405-418 被引量:94
标识
DOI:10.1109/tevc.2020.3044711
摘要

Multimodal multiobjective optimization problems (MMOPs) widely exist in real-world applications, which have multiple equivalent Pareto-optimal solutions that are similar in the objective space but totally different in the decision space. While some evolutionary algorithms (EAs) have been developed to find the equivalent Pareto-optimal solutions in recent years, they are ineffective to handle large-scale MMOPs having a large number of variables. This article thus proposes an EA for solving large-scale MMOPs with sparse Pareto-optimal solutions, i.e., most variables in the optimal solutions are 0. The proposed algorithm explores different regions of the decision space via multiple subpopulations and guides the search behavior of the subpopulations via adaptively updated guiding vectors. The guiding vector for each subpopulation not only provides efficient convergence in the huge search space but also differentiates its search direction from others to handle the multimodality. While most existing EAs solve MMOPs with 2-7 decision variables, the proposed algorithm is shown to be effective for benchmark MMOPs with up to 500 decision variables. Moreover, the proposed algorithm also produces a better result than state-of-the-art methods for the neural architecture search.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
啊亮发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
地球发布了新的文献求助20
1秒前
DKY发布了新的文献求助20
1秒前
1秒前
1秒前
一个奎发布了新的文献求助10
1秒前
1秒前
逍遥子完成签到,获得积分10
2秒前
2秒前
2秒前
蜂鸟5156发布了新的文献求助10
2秒前
陈梦鼠发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
情怀应助腼腆的山彤采纳,获得10
3秒前
3秒前
yy关注了科研通微信公众号
3秒前
陈梦鼠发布了新的文献求助10
3秒前
3秒前
4秒前
今后应助林小幸采纳,获得30
4秒前
量子星尘发布了新的文献求助10
4秒前
陈梦鼠发布了新的文献求助10
4秒前
陈梦鼠发布了新的文献求助10
4秒前
陈梦鼠发布了新的文献求助10
4秒前
陈梦鼠发布了新的文献求助10
4秒前
陈梦鼠发布了新的文献求助10
4秒前
陈梦鼠发布了新的文献求助10
4秒前
陈梦鼠发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546153
求助须知:如何正确求助?哪些是违规求助? 4631960
关于积分的说明 14624094
捐赠科研通 4573677
什么是DOI,文献DOI怎么找? 2507699
邀请新用户注册赠送积分活动 1484361
关于科研通互助平台的介绍 1455656