米氏散射
光催化
三元运算
纳米壳
材料科学
散射
吸收(声学)
纳米颗粒
纳米技术
光散射
光学
化学
催化作用
复合材料
物理
有机化学
程序设计语言
计算机科学
作者
Xiaxi Yao,Xiuli Hu,Wenjun Zhang,Xinyu Gong,Xuhong Wang,Suresh C. Pillai,Dionysios D. Dionysiou,Dawei Wang
标识
DOI:10.1016/j.apcatb.2020.119153
摘要
We design a ternary TiO2-Au-CdS photocatalyst with controllable Mie scattering peak for the first time to verify if matching the Mie scattering peak with the absorption peak of semiconductors could greatly improve their photocatalytic performances. By varying the inner diameter of TiO2 nanoshell from 150 to 255 nm, the Mie scattering peak was controlled from below 370–510 nm. When the Mie scattering peak of TiO2 nanoshell (inner diameter = 185 nm) matches the absorption band of CdS, a highest visible-light photocatalytic hydrogen production rate (669.7 μmol h−1 g−1) was observed among all the ternary photocatalysts with different inner diameters. The backscattering calculation based on Mie's theory and the comparison of photocatalytic performances of different composite catalysts including TiO2, TiO2-Au, and TiO2-CdS hollow nanoshells also confirmed that the scattering phenomenon in hollow nanoshells is beneficial for photocatalysis. This work may favor various technological applications of Mie scattering for effective light utilization.
科研通智能强力驱动
Strongly Powered by AbleSci AI