Recent trends in the use of FTIR spectroscopy integrated with chemometrics for the detection of edible oil adulteration

化学计量学 傅里叶变换红外光谱 食用油 成分 红外光谱学 生化工程 工艺工程 环境科学 制浆造纸工业 化学 食品科学 色谱法 工程类 化学工程 有机化学
作者
Rahul Jamwal,Amit,Shivani Kumari,Sushma Sharma,Simon Kelly,Andrew Cannavan,Dileep Kumar Singh
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:113: 103222-103222 被引量:74
标识
DOI:10.1016/j.vibspec.2021.103222
摘要

Edible oils play an essential role in our routine life as cooking or frying oil as well as an ingredient used in food, medicine, and cosmetic commodities. Because of the high consumption demands of edible oils, adulteration incidents have immensely raised. Thus, adulteration detection is very crucial for consumers, oil-producing industries, and regulatory authorities. The traditional analytical methods are usually time-taking, tedious, detrimental, lacking online monitoring, and need extensive sample preparation. Whereas, the modern oil industry needs a competent and non-calamitous analytical approach for the rapid and precise quality control of edible oils. Fourier transform infrared (FTIR) spectroscopy is an excellent technique for the detection of edible oil adulteration. It utilizes the fingerprint region of the obtained spectra to differentiate and detect the different adulterants present in the edible oil. The spectra collected by the FTIR spectroscopy are complex and very much similar for different edible oils. To solve this complication, the multivariate branch of chemometrics coupled with FTIR spectral data has been employed to precisely distinguish between different edible oil adulterants. In chemometrics, different regression models, along with its various robust validation parameters, can detect even minute adulteration in edible oil with high precision and accuracy. This concise review presents the critical aspects of major findings and brings together recent studies of the application of FTIR spectroscopy integrated with chemometric tools from several reliable sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花椒完成签到,获得积分10
1秒前
hsj123123完成签到 ,获得积分10
1秒前
2秒前
luc应助BY采纳,获得10
2秒前
微笑海冬完成签到,获得积分10
2秒前
FashionBoy应助去看海嘛采纳,获得10
2秒前
秋天发布了新的文献求助10
3秒前
gy发布了新的文献求助10
3秒前
Zed完成签到,获得积分10
3秒前
4秒前
4秒前
顾矜应助丽丽采纳,获得10
5秒前
完美世界应助klee采纳,获得10
5秒前
5秒前
个性凌柏完成签到,获得积分20
6秒前
平常的毛豆应助Camellia采纳,获得10
6秒前
shanjianjie完成签到,获得积分20
6秒前
6秒前
田様应助阿鹿462采纳,获得10
6秒前
劲秉应助魏不乐采纳,获得10
6秒前
7秒前
爱笑的莛完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
quyunp完成签到,获得积分10
9秒前
nnn发布了新的文献求助10
10秒前
原来是啊歪啊完成签到 ,获得积分10
10秒前
10秒前
Orange应助良景似尘采纳,获得10
11秒前
情怀应助gy采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
fifteen应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
RickySong发布了新的文献求助10
13秒前
爆米花应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259400
求助须知:如何正确求助?哪些是违规求助? 2901041
关于积分的说明 8313648
捐赠科研通 2570419
什么是DOI,文献DOI怎么找? 1396491
科研通“疑难数据库(出版商)”最低求助积分说明 653523
邀请新用户注册赠送积分活动 631527