生存分析
随机森林
数据集
集合(抽象数据类型)
计算机科学
领域(数学)
存活率
统计
人工智能
机器学习
数据挖掘
数学
医学
外科
程序设计语言
纯数学
作者
Z Chen,Hongyu Xu,Zihan Li,Y Zhang,Tan Zhou,Wenqi You,Ke-Han Pan,Weijian Li
标识
DOI:10.3760/cma.j.cn112150-20200911-01197
摘要
Traditional survival methods have a wide application in the field of biomedical research. However, applying traditional survival methods requires data to meet a set of special assumptions while the Random Survival Forest model can overcome this inconvenience. Herein, we used the clinical data of Primary Biliary Cholangitis (PBC) from Mayo Clinic to introduce and demonstrate Random Survival Forest model from mathematical principles, model building, practical example and attentions, aiming to provide a novel method for doing survival analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI