Multi disease-prediction framework using hybrid deep learning: an optimal prediction model

深度学习 计算机科学 人工智能 机器学习 深信不疑网络 规范化(社会学) 特征工程 水准点(测量) 大数据 人工神经网络 数据挖掘 大地测量学 人类学 社会学 地理
作者
Anusha Ampavathi,T. Vijaya Saradhi
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Taylor & Francis]
卷期号:24 (10): 1146-1168 被引量:23
标识
DOI:10.1080/10255842.2020.1869726
摘要

Big data and its approaches are generally helpful for healthcare and biomedical sectors for predicting the disease. For trivial symptoms, the difficulty is to meet the doctors at any time in the hospital. Thus, big data provides essential data regarding the diseases on the basis of the patient's symptoms. For several medical organizations, disease prediction is important for making the best feasible health care decisions. Conversely, the conventional medical care model offers input as structured that requires more accurate and consistent prediction. This paper is planned to develop the multi-disease prediction using the improvised deep learning concept. Here, the different datasets pertain to "Diabetes, Hepatitis, lung cancer, liver tumor, heart disease, Parkinson's disease, and Alzheimer's disease", from the benchmark UCI repository is gathered for conducting the experiment. The proposed model involves three phases (a) Data normalization (b) Weighted normalized feature extraction, and (c) prediction. Initially, the dataset is normalized in order to make the attribute's range at a certain level. Further, weighted feature extraction is performed, in which a weight function is multiplied with each attribute value for making large scale deviation. Here, the weight function is optimized using the combination of two meta-heuristic algorithms termed as Jaya Algorithm-based Multi-Verse Optimization algorithm (JA-MVO). The optimally extracted features are subjected to the hybrid deep learning algorithms like "Deep Belief Network (DBN) and Recurrent Neural Network (RNN)". As a modification to hybrid deep learning architecture, the weight of both DBN and RNN is optimized using the same hybrid optimization algorithm. Further, the comparative evaluation of the proposed prediction over the existing models certifies its effectiveness through various performance measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Liz发布了新的文献求助10
刚刚
lixinyue发布了新的文献求助10
2秒前
kk完成签到,获得积分10
2秒前
可可应助耳朵先生采纳,获得10
3秒前
3秒前
3秒前
番茄酱完成签到 ,获得积分10
3秒前
怕黑的静蕾应助liuxuiaologn采纳,获得10
5秒前
天行马发布了新的文献求助10
5秒前
麦乐迪应助壮观的擎采纳,获得10
6秒前
Ava应助josy采纳,获得10
6秒前
麦乐迪应助壮观的擎采纳,获得10
6秒前
麦乐迪应助壮观的擎采纳,获得10
6秒前
十二应助壮观的擎采纳,获得10
6秒前
yuyan发布了新的文献求助10
7秒前
爆米花应助珂珂采纳,获得10
7秒前
7秒前
8秒前
8秒前
传奇3应助魔芋采纳,获得10
9秒前
pokikiii发布了新的文献求助10
9秒前
9秒前
11秒前
HB发布了新的文献求助10
11秒前
科研鸟发布了新的文献求助10
12秒前
13秒前
小鹏哥完成签到,获得积分10
13秒前
13秒前
14秒前
16秒前
16秒前
pokikiii完成签到,获得积分10
17秒前
hvivi6发布了新的文献求助10
17秒前
完美世界应助xiatl采纳,获得10
17秒前
18秒前
所所应助SCI方便面采纳,获得10
18秒前
18秒前
HB完成签到,获得积分10
19秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966726
求助须知:如何正确求助?哪些是违规求助? 3512179
关于积分的说明 11162302
捐赠科研通 3247077
什么是DOI,文献DOI怎么找? 1793689
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804429