Multi disease-prediction framework using hybrid deep learning: an optimal prediction model

深度学习 计算机科学 人工智能 机器学习 深信不疑网络 规范化(社会学) 特征工程 水准点(测量) 大数据 人工神经网络 数据挖掘 大地测量学 人类学 社会学 地理
作者
Anusha Ampavathi,T. Vijaya Saradhi
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Informa]
卷期号:24 (10): 1146-1168 被引量:23
标识
DOI:10.1080/10255842.2020.1869726
摘要

Big data and its approaches are generally helpful for healthcare and biomedical sectors for predicting the disease. For trivial symptoms, the difficulty is to meet the doctors at any time in the hospital. Thus, big data provides essential data regarding the diseases on the basis of the patient's symptoms. For several medical organizations, disease prediction is important for making the best feasible health care decisions. Conversely, the conventional medical care model offers input as structured that requires more accurate and consistent prediction. This paper is planned to develop the multi-disease prediction using the improvised deep learning concept. Here, the different datasets pertain to "Diabetes, Hepatitis, lung cancer, liver tumor, heart disease, Parkinson's disease, and Alzheimer's disease", from the benchmark UCI repository is gathered for conducting the experiment. The proposed model involves three phases (a) Data normalization (b) Weighted normalized feature extraction, and (c) prediction. Initially, the dataset is normalized in order to make the attribute's range at a certain level. Further, weighted feature extraction is performed, in which a weight function is multiplied with each attribute value for making large scale deviation. Here, the weight function is optimized using the combination of two meta-heuristic algorithms termed as Jaya Algorithm-based Multi-Verse Optimization algorithm (JA-MVO). The optimally extracted features are subjected to the hybrid deep learning algorithms like "Deep Belief Network (DBN) and Recurrent Neural Network (RNN)". As a modification to hybrid deep learning architecture, the weight of both DBN and RNN is optimized using the same hybrid optimization algorithm. Further, the comparative evaluation of the proposed prediction over the existing models certifies its effectiveness through various performance measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
咕咕完成签到,获得积分10
2秒前
拼搏的尔蓝完成签到,获得积分10
2秒前
2秒前
隐形曼青应助xol采纳,获得10
2秒前
2秒前
3秒前
白昕宇完成签到,获得积分10
3秒前
3秒前
将会到达发布了新的文献求助10
3秒前
4秒前
夏木子发布了新的文献求助10
4秒前
安详冷卉发布了新的文献求助10
4秒前
5秒前
Akim应助mhx采纳,获得10
5秒前
zhang完成签到 ,获得积分10
5秒前
志士心完成签到 ,获得积分10
5秒前
Owen应助宇智波达采纳,获得10
6秒前
白昕宇发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
咕咕发布了新的文献求助10
7秒前
Ling关注了科研通微信公众号
8秒前
朴实问筠发布了新的文献求助10
8秒前
8秒前
情怀应助淡定香萱采纳,获得10
8秒前
付XR发布了新的文献求助10
8秒前
Leo发布了新的文献求助30
8秒前
9秒前
科研通AI5应助落雁沙采纳,获得10
9秒前
9秒前
喜多米430发布了新的文献求助10
11秒前
大模型应助无奈的盈采纳,获得10
11秒前
张亦芊如发布了新的文献求助10
11秒前
烂漫明轩完成签到,获得积分10
12秒前
tanglu完成签到,获得积分10
12秒前
劲秉应助jersey采纳,获得20
13秒前
杨洋发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514287
求助须知:如何正确求助?哪些是违规求助? 3096594
关于积分的说明 9232412
捐赠科研通 2791737
什么是DOI,文献DOI怎么找? 1532012
邀请新用户注册赠送积分活动 711733
科研通“疑难数据库(出版商)”最低求助积分说明 707012