Early detection of valuable patents using a deep learning model: Case of semiconductor industry

计算机科学 深度学习 人工智能 利用 投资(军事) 半导体工业 专利局 数据科学 知识管理 工程类 政治学 计算机安全 机械工程 政治 制造工程 法学
作者
Park Chung,So Young Sohn
出处
期刊:Technological Forecasting and Social Change [Elsevier BV]
卷期号:158: 120146-120146 被引量:47
标识
DOI:10.1016/j.techfore.2020.120146
摘要

An essential concept in technology management is the early detection of valuable patents. Traditional classification approaches have been utilized to identify effective patents based on the extracted patent topics and indices. However, they cannot consider detailed contextual information or relatively long word sequences in patent documents. In this study, we propose a patent grade evaluation framework based on a deep learning model that can capture the detailed semantic features of patent text. Therefore, this study adopts both a convolution neural network and bidirectional long short-term memory with structured patent text data consisting of abstracts and claims for the classification of three levels of patent grades measured in terms of the average number of forward citations per annum. We further exploit the patent indices identified in the early stage as additional inputs to the model to increase the accuracy. Our model has realized over 75% precision and recall in identifying top-grade semiconductor patents granted by the USPTO from 2000 to 2015. We anticipate that our deep learning-based framework with patent text and indices will play a significant supporting role in mergers and acquisitions, investment decisions, and corporate planning through the early-stage evaluation of a large number of patents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
5秒前
5秒前
6秒前
6秒前
zmuzhang2019发布了新的文献求助10
7秒前
科目三应助学霸宇大王采纳,获得30
8秒前
9秒前
SciGPT应助奥利安费采纳,获得10
9秒前
9秒前
一一发布了新的文献求助10
11秒前
11秒前
re发布了新的文献求助10
12秒前
12秒前
14秒前
16秒前
肖十七完成签到,获得积分10
18秒前
图图发布了新的文献求助10
19秒前
huohuo完成签到,获得积分10
19秒前
orixero应助无奈的老姆采纳,获得10
20秒前
20秒前
20秒前
wwtt发布了新的文献求助10
20秒前
21秒前
23秒前
奥利安费发布了新的文献求助10
23秒前
云月林生发布了新的文献求助10
26秒前
Jasper应助义气尔安采纳,获得10
29秒前
29秒前
29秒前
29秒前
32秒前
xlxl发布了新的文献求助10
34秒前
34秒前
34秒前
wink发布了新的文献求助10
34秒前
非鱼鱼子发布了新的文献求助10
35秒前
申申完成签到,获得积分10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962670
求助须知:如何正确求助?哪些是违规求助? 3508680
关于积分的说明 11142146
捐赠科研通 3241403
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872935
科研通“疑难数据库(出版商)”最低求助积分说明 803517