亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feature extraction for hyperspectral image classification: a review

高光谱成像 人工智能 降维 模式识别(心理学) 计算机科学 判别式 特征提取 冗余(工程) 空间分析 维数之咒 像素 信息抽取 遥感 特征(语言学) 地理 语言学 哲学 操作系统
作者
Brajesh Kumar,Onkar Dikshit,Ashwani Gupta,Manoj Kumar Singh
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:41 (16): 6248-6287 被引量:136
标识
DOI:10.1080/01431161.2020.1736732
摘要

Hyperspectral image sensors capture surface reflectance over a range of wavelengths. The fine spectral information is recorded in terms of hundreds of bands. Hyperspectral image classification has observed a great interest among researchers in remote sensing community. High dimensionality provides rich spectral information for the classification process. But due to dense sampling, some of the bands may contain redundant information. Sometimes, spectral information alone may not be sufficient to obtain desired accuracy of results. Therefore, often spatial and spectral information is integrated for better accuracy. However, unlike spectral information, the spatial information is not directly available with the image. Additional efforts are needed to extract spatial information. Feature extraction is an important step in a classification framework. It has following major objectives: redundancy reduction, dimensionality reduction (usually but not always), enhancing discriminative information, and modelling of spatial features. The spectral feature extraction process transforms the original data to a new space of a different dimension, enhancing the class separability without significant loss of information. Various mathematical techniques are applied for modelling spatial features based on pixel spatial neighbourhood relations. In this paper, a review of the major feature extraction techniques is presented. Experimental results are presented for two benchmark hyperspectral images to evaluate different feature extraction techniques for various parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
Ma发布了新的文献求助10
17秒前
1234完成签到,获得积分10
29秒前
岁和景明完成签到 ,获得积分10
32秒前
科研通AI5应助Ma采纳,获得10
35秒前
西蓝花香菜完成签到 ,获得积分10
42秒前
1分钟前
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Ma发布了新的文献求助10
2分钟前
2分钟前
科研通AI5应助Ma采纳,获得10
2分钟前
忧伤的绍辉完成签到 ,获得积分10
2分钟前
隐形曼青应助易四夕采纳,获得10
2分钟前
3分钟前
易四夕发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Ma发布了新的文献求助10
4分钟前
4分钟前
随机子发布了新的文献求助10
4分钟前
4分钟前
Ava应助科研通管家采纳,获得10
4分钟前
科目三应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Ma发布了新的文献求助10
4分钟前
Ma完成签到,获得积分10
5分钟前
5分钟前
易四夕发布了新的文献求助10
5分钟前
5分钟前
6分钟前
英姑应助王大壮采纳,获得10
6分钟前
SciGPT应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
Mine发布了新的文献求助10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167214
捐赠科研通 3248660
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638