作者
Pinfang Kang,Jiahui Wang,Dian Chun FANG,Tingting Fang,Ying Yu,Weiping Zhang,Lin Shen,Zhenghong Li,Hongju Wang,Hongwei Ye,Qin Gao
摘要
Necroptosis is one of a regulated programmed death mode, fibrosis is closely related with cell death. It has been reported that inhibition of necroptosis can play the protective role in cardiac ischemia and reperfusion injury, stroke and other diseases, but the mechanisms of aldehyde dehydrogenases 2 (ALDH2) against high glucose induced neonatal rat ventricular primary cardiomyocytes fibrosis and necroptosis had not been elucidated clearly. This study was to observe the effect of ALDH2 on high glucose (HG) induced myocardial fibrosis and necroptosis in primary rat cardiomyocytes model. In contrast to normal glucose group, in HG group, with the decreases of ALDH2 activity, mRNA and protein levels, the cardiomyocytes viability was decreased, reactive oxygen species (ROS), the inflammation factors - tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) levels, collagen I (col I) and col III mRNA expressions and tissue inhibitors of matrix metalloproteinase 4 (TIMP4) protein expression were increased, while matrix metalloproteinase 14 (MMP14) protein level, the ratio of MMP14/TIMP4 were decreased, and the necroptosis key factors - the receptor interacting protein 1 (RIP1), RIP3 and mixed lineage kinase domain-like protein (MLKL) at mRNA and protein expressions were increased, the inflammasome core proteins - NLRP3 and ASC protein expressions were also increased, the apoptosis rate and necrosis rate were also increased. When the cardiomyocytes were treated with Alda-1 (the ALDH2 agonist) in HG intervention, the cell viability, ALDH2 activity, mRNA and protein levels, MMP14 protein level, the ratio of MMP14/TIMP4 were higher, ROS and TNF-α, IL-6, IL-1β levels, RIP1, RIP3, MLKL, NLRP3 and ASC expressions, col I and col III, TIMP4 expressions, the apoptosis rate and necrosis rate were lower than in HG group. Daidzin, the antagonist of ALDH2 abolished the role of Alda-1. In summary, ALDH2 maybe is a key regulator in high glucose induced cardiomyocytes injury. Activation of ALDH2 prevented the happening of fibrosis, apoptosis and necroptosis in high glucose induced primary cardiomyocytes injury model, the protective effects were related to the inhibiting of oxidative stress and inflammation, changing of MMP14 and TIMP4, then inhibiting the happening of fibrosis, apoptosis and necroptosis. These findings advance our understanding of the intensive mechanisms of ALDH2's cardioprotection, and provide the targeted basis for clinical diabetes treatment.