亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images

高光谱成像 遥感 卷积神经网络 计算机科学 人工智能 特征(语言学) 光谱特征 模式识别(心理学) 光谱带 植被(病理学) 树(集合论) 地理 数学 数学分析 医学 语言学 哲学 病理
作者
Bin Zhang,Lin Zhao,Xiaoli Zhang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:247: 111938-111938 被引量:200
标识
DOI:10.1016/j.rse.2020.111938
摘要

Airborne hyperspectral remote sensing data with both rich spectral and spatial features can effectively improve the classification accuracy of vegetation species. However, the spectral data of hundreds of bands brings about problems such as dimensional explosion, which poses a huge challenge for hyperspectral remote sensing classification based on classical parameters models. Deep learning methods have been used for remotely sensed images classification in recent years, but the popular HSI datasets including Kennedy Space Center, Indian Pines, Pavia University scene and Salinas scene, have low spatial resolution, significant differences between categories, and regular boundaries. When applied to the classification of forestry tree species, the accuracy often decreases because the spectral response of different plants of the same family and genus are very similar, especially under the fragmented species distribution, complex topography and the occluded canopy. So we collect new data sets, selected Gaofeng State Owned Forest Farm in Guangxi province in south China as the research area and adopted the airborne hyperspectral data obtained by the LiCHy system of the Chinese Academy of Forestry to explore an improved three-dimensional convolutional neural network(3D-CNN) model for tree species classification. The proposed model uses raw data as input without dimension reduction or feature screening, and simultaneously extracts spectral and spatial features. After the 3D convolutional layer, the captured high-level semantic concept is a joint spatial spectral feature representation, so we can turn it into a one-dimensional feature as a new input to learn a more abstract level of expression. The widely used earlystop method is also used to prevent overfitting. The proposed model is a lightweight, generalized, and fast convergence classification model, by which the short-time and large-area of multiple tree species classification with high-precision can be realized. The result shows that the 3D-1D CNN model can shorten the training time of the 3D CNN model by 60% and achieve a classification accuracy of 93.14% within 50 ha in 6.37 min, which provides a basis for the classification of tree species, the mapping of forest form and the inventory of forest resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
林小鹿完成签到,获得积分10
14秒前
Exiler发布了新的文献求助10
26秒前
852应助JoeyJin采纳,获得10
32秒前
林小鹿发布了新的文献求助200
33秒前
繁星完成签到 ,获得积分10
37秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
44秒前
量子星尘发布了新的文献求助10
53秒前
59秒前
夏侯德东完成签到,获得积分10
1分钟前
1分钟前
彭于晏应助橙汁儿采纳,获得10
1分钟前
Aliothae发布了新的文献求助10
1分钟前
商毛毛发布了新的文献求助10
1分钟前
橙汁儿完成签到,获得积分10
1分钟前
邓佳鑫Alan应助Aliothae采纳,获得10
1分钟前
Aliothae完成签到,获得积分10
1分钟前
看不了一点文献应助夏宇采纳,获得20
1分钟前
无花果应助美满惜寒采纳,获得10
1分钟前
邢晓彤完成签到 ,获得积分10
1分钟前
整齐的飞兰完成签到 ,获得积分10
1分钟前
1分钟前
美满惜寒发布了新的文献求助10
1分钟前
1分钟前
研友_VZG7GZ应助VvV采纳,获得10
1分钟前
大模型应助美满惜寒采纳,获得10
1分钟前
solar发布了新的文献求助10
1分钟前
2分钟前
儒雅的十八完成签到,获得积分10
2分钟前
雪白元风完成签到 ,获得积分10
2分钟前
LHH完成签到 ,获得积分10
2分钟前
2分钟前
仁爱裘完成签到,获得积分10
2分钟前
美满惜寒发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
2分钟前
科研兵发布了新的文献求助20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413114
求助须知:如何正确求助?哪些是违规求助? 4530302
关于积分的说明 14122810
捐赠科研通 4445237
什么是DOI,文献DOI怎么找? 2439152
邀请新用户注册赠送积分活动 1431216
关于科研通互助平台的介绍 1408591