Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images

高光谱成像 遥感 卷积神经网络 计算机科学 人工智能 特征(语言学) 光谱特征 模式识别(心理学) 光谱带 植被(病理学) 树(集合论) 地理 数学 数学分析 医学 语言学 哲学 病理
作者
Bin Zhang,Lin Zhao,Xiaoli Zhang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:247: 111938-111938 被引量:200
标识
DOI:10.1016/j.rse.2020.111938
摘要

Airborne hyperspectral remote sensing data with both rich spectral and spatial features can effectively improve the classification accuracy of vegetation species. However, the spectral data of hundreds of bands brings about problems such as dimensional explosion, which poses a huge challenge for hyperspectral remote sensing classification based on classical parameters models. Deep learning methods have been used for remotely sensed images classification in recent years, but the popular HSI datasets including Kennedy Space Center, Indian Pines, Pavia University scene and Salinas scene, have low spatial resolution, significant differences between categories, and regular boundaries. When applied to the classification of forestry tree species, the accuracy often decreases because the spectral response of different plants of the same family and genus are very similar, especially under the fragmented species distribution, complex topography and the occluded canopy. So we collect new data sets, selected Gaofeng State Owned Forest Farm in Guangxi province in south China as the research area and adopted the airborne hyperspectral data obtained by the LiCHy system of the Chinese Academy of Forestry to explore an improved three-dimensional convolutional neural network(3D-CNN) model for tree species classification. The proposed model uses raw data as input without dimension reduction or feature screening, and simultaneously extracts spectral and spatial features. After the 3D convolutional layer, the captured high-level semantic concept is a joint spatial spectral feature representation, so we can turn it into a one-dimensional feature as a new input to learn a more abstract level of expression. The widely used earlystop method is also used to prevent overfitting. The proposed model is a lightweight, generalized, and fast convergence classification model, by which the short-time and large-area of multiple tree species classification with high-precision can be realized. The result shows that the 3D-1D CNN model can shorten the training time of the 3D CNN model by 60% and achieve a classification accuracy of 93.14% within 50 ha in 6.37 min, which provides a basis for the classification of tree species, the mapping of forest form and the inventory of forest resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
莫里完成签到,获得积分10
1秒前
飞快的奄完成签到,获得积分10
1秒前
成就的菀完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助20
2秒前
活泼小笼包完成签到,获得积分10
3秒前
机智的乌完成签到,获得积分10
3秒前
Lukomere发布了新的文献求助10
3秒前
3秒前
tt完成签到 ,获得积分10
4秒前
酷波er应助Dallas采纳,获得10
4秒前
4秒前
狐尔莫发布了新的文献求助10
5秒前
shepherd完成签到,获得积分10
5秒前
momo发布了新的文献求助10
5秒前
突突突完成签到,获得积分10
5秒前
6秒前
Akun发布了新的文献求助10
6秒前
李爱国应助整齐的雁丝采纳,获得10
7秒前
7秒前
8秒前
留胡子的海豚完成签到,获得积分10
8秒前
娜行完成签到 ,获得积分10
8秒前
8秒前
zxs666完成签到,获得积分10
9秒前
Luna完成签到 ,获得积分10
9秒前
728完成签到,获得积分10
9秒前
Kleen发布了新的文献求助10
9秒前
9秒前
谨慎妙菡完成签到,获得积分10
10秒前
科研通AI6应助科研通管家采纳,获得100
10秒前
10秒前
10秒前
10秒前
呆萌的觅松完成签到,获得积分10
10秒前
小铭同学完成签到,获得积分10
10秒前
sure完成签到,获得积分10
10秒前
研友_V8R99Z完成签到,获得积分10
10秒前
潇洒的冰淇淋完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997