Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images

高光谱成像 遥感 卷积神经网络 计算机科学 人工智能 特征(语言学) 光谱特征 模式识别(心理学) 光谱带 植被(病理学) 树(集合论) 地理 数学 数学分析 医学 语言学 哲学 病理
作者
Bin Zhang,Lin Zhao,Xiaoli Zhang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:247: 111938-111938 被引量:171
标识
DOI:10.1016/j.rse.2020.111938
摘要

Airborne hyperspectral remote sensing data with both rich spectral and spatial features can effectively improve the classification accuracy of vegetation species. However, the spectral data of hundreds of bands brings about problems such as dimensional explosion, which poses a huge challenge for hyperspectral remote sensing classification based on classical parameters models. Deep learning methods have been used for remotely sensed images classification in recent years, but the popular HSI datasets including Kennedy Space Center, Indian Pines, Pavia University scene and Salinas scene, have low spatial resolution, significant differences between categories, and regular boundaries. When applied to the classification of forestry tree species, the accuracy often decreases because the spectral response of different plants of the same family and genus are very similar, especially under the fragmented species distribution, complex topography and the occluded canopy. So we collect new data sets, selected Gaofeng State Owned Forest Farm in Guangxi province in south China as the research area and adopted the airborne hyperspectral data obtained by the LiCHy system of the Chinese Academy of Forestry to explore an improved three-dimensional convolutional neural network(3D-CNN) model for tree species classification. The proposed model uses raw data as input without dimension reduction or feature screening, and simultaneously extracts spectral and spatial features. After the 3D convolutional layer, the captured high-level semantic concept is a joint spatial spectral feature representation, so we can turn it into a one-dimensional feature as a new input to learn a more abstract level of expression. The widely used earlystop method is also used to prevent overfitting. The proposed model is a lightweight, generalized, and fast convergence classification model, by which the short-time and large-area of multiple tree species classification with high-precision can be realized. The result shows that the 3D-1D CNN model can shorten the training time of the 3D CNN model by 60% and achieve a classification accuracy of 93.14% within 50 ha in 6.37 min, which provides a basis for the classification of tree species, the mapping of forest form and the inventory of forest resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助MIRROR采纳,获得10
刚刚
圣诞节完成签到,获得积分10
1秒前
2秒前
2秒前
无奈行恶应助稳重的寒梦采纳,获得20
3秒前
无奈行恶应助稳重的寒梦采纳,获得20
3秒前
wen发布了新的文献求助10
5秒前
5秒前
以行践言发布了新的文献求助10
5秒前
在水一方应助闺音采纳,获得10
8秒前
写得出发的中完成签到,获得积分10
8秒前
Chen272发布了新的文献求助10
8秒前
我要文献发布了新的文献求助10
9秒前
汉堡包应助frl采纳,获得10
10秒前
DK发布了新的文献求助10
10秒前
10秒前
旭晓完成签到 ,获得积分10
11秒前
11秒前
11秒前
wen关闭了wen文献求助
13秒前
14秒前
猫小树完成签到 ,获得积分10
14秒前
CipherSage应助考研小白采纳,获得10
16秒前
杨振发布了新的文献求助10
16秒前
BatFaith应助阿俊1212采纳,获得30
16秒前
DK完成签到,获得积分10
16秒前
我要文献完成签到,获得积分20
16秒前
16秒前
搜集达人应助清风采纳,获得10
17秒前
Dora完成签到,获得积分10
17秒前
18秒前
18秒前
孟醒完成签到,获得积分10
20秒前
活泼蜡烛发布了新的文献求助10
20秒前
研友_ngKyqn发布了新的文献求助10
21秒前
kk子发布了新的文献求助10
21秒前
wanwan应助DDDDD采纳,获得10
21秒前
ding应助Chen272采纳,获得10
23秒前
华仔应助爱听歌时光采纳,获得10
23秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991995
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260801
捐赠科研通 3272413
什么是DOI,文献DOI怎么找? 1805820
邀请新用户注册赠送积分活动 882665
科研通“疑难数据库(出版商)”最低求助积分说明 809425