Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images

高光谱成像 遥感 卷积神经网络 计算机科学 人工智能 特征(语言学) 光谱特征 模式识别(心理学) 光谱带 植被(病理学) 树(集合论) 地理 数学 数学分析 医学 语言学 哲学 病理
作者
Bin Zhang,Lin Zhao,Xiaoli Zhang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:247: 111938-111938 被引量:161
标识
DOI:10.1016/j.rse.2020.111938
摘要

Airborne hyperspectral remote sensing data with both rich spectral and spatial features can effectively improve the classification accuracy of vegetation species. However, the spectral data of hundreds of bands brings about problems such as dimensional explosion, which poses a huge challenge for hyperspectral remote sensing classification based on classical parameters models. Deep learning methods have been used for remotely sensed images classification in recent years, but the popular HSI datasets including Kennedy Space Center, Indian Pines, Pavia University scene and Salinas scene, have low spatial resolution, significant differences between categories, and regular boundaries. When applied to the classification of forestry tree species, the accuracy often decreases because the spectral response of different plants of the same family and genus are very similar, especially under the fragmented species distribution, complex topography and the occluded canopy. So we collect new data sets, selected Gaofeng State Owned Forest Farm in Guangxi province in south China as the research area and adopted the airborne hyperspectral data obtained by the LiCHy system of the Chinese Academy of Forestry to explore an improved three-dimensional convolutional neural network(3D-CNN) model for tree species classification. The proposed model uses raw data as input without dimension reduction or feature screening, and simultaneously extracts spectral and spatial features. After the 3D convolutional layer, the captured high-level semantic concept is a joint spatial spectral feature representation, so we can turn it into a one-dimensional feature as a new input to learn a more abstract level of expression. The widely used earlystop method is also used to prevent overfitting. The proposed model is a lightweight, generalized, and fast convergence classification model, by which the short-time and large-area of multiple tree species classification with high-precision can be realized. The result shows that the 3D-1D CNN model can shorten the training time of the 3D CNN model by 60% and achieve a classification accuracy of 93.14% within 50 ha in 6.37 min, which provides a basis for the classification of tree species, the mapping of forest form and the inventory of forest resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助晨晨采纳,获得10
1秒前
安详的帽子完成签到 ,获得积分10
1秒前
Maple完成签到,获得积分10
2秒前
Tarahu完成签到,获得积分10
2秒前
3秒前
3秒前
整齐泥猴桃完成签到,获得积分10
4秒前
5秒前
沉默的大冰塊完成签到 ,获得积分10
5秒前
Radiance完成签到,获得积分10
6秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
7秒前
桐桐应助暴躁的咖啡采纳,获得10
7秒前
杨洋完成签到,获得积分10
8秒前
11秒前
Wilson完成签到,获得积分10
12秒前
niuniu完成签到,获得积分10
13秒前
小蘑菇应助123采纳,获得10
15秒前
咕噜完成签到,获得积分10
15秒前
幸福娃娃发布了新的文献求助10
16秒前
16秒前
17秒前
积极慕梅应助皮皮采纳,获得10
17秒前
17秒前
Sisi Lee完成签到,获得积分10
18秒前
言余应助光亮小蚂蚁采纳,获得100
18秒前
会飞的鱼发布了新的文献求助10
19秒前
胡桃夹馍发布了新的文献求助10
19秒前
希望天下0贩的0应助yyymmma采纳,获得10
20秒前
老老实实好好活着完成签到,获得积分10
20秒前
aaaaafine发布了新的文献求助10
22秒前
AAA111122完成签到,获得积分10
22秒前
22秒前
咕噜发布了新的文献求助10
23秒前
赘婿应助年华采纳,获得10
25秒前
26秒前
李杰发布了新的文献求助10
27秒前
困敦发布了新的文献求助10
27秒前
gentledragon完成签到,获得积分10
27秒前
材料小刘鸭完成签到,获得积分10
27秒前
着急的向雁完成签到,获得积分10
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792465
关于积分的说明 7802933
捐赠科研通 2448664
什么是DOI,文献DOI怎么找? 1302761
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237