Ship encounter azimuth map division based on automatic identification system data and support vector classification

师(数学) 方位角 鉴定(生物学) 矢量地图 遥感 支持向量机 计算机科学 海洋工程 人工智能 数据挖掘 地理 工程类 生物 数学 算术 植物 几何学
作者
Miao Gao,Guangming Shi,Jiao Liu
出处
期刊:Ocean Engineering [Elsevier]
卷期号:213: 107636-107636 被引量:15
标识
DOI:10.1016/j.oceaneng.2020.107636
摘要

Abstract Currently, the division of encounter situations and collision avoidance decisions both depend on the individual subjective judgment of officers under conditions of extraordinary complexity and randomness. Ambiguities and contradictions are present among the existing quantifications of azimuth division from the International Regulations for Preventing Collisions at Sea (COLREGS), radar collision avoidance diagrams, and expert questionnaire results. At present, there is no unified and practical division model for the variety of azimuth divisions encountered by ships. With the development of intelligent ship technology, the realization of maritime autonomous surface ships is possible. However, more obscure problems must be accurately defined. Moreover, the requirements for an accurate division of the ship encounter situation in maritime accident analysis are becoming more intense. Additional requirements have been imposed on the division of azimuth, and ship encounters have been quantified into multiple features for machine learning. In this study, automatic identification system data near Zhoushan Port were used to reproduce the relative motion process of ships, and extract the meeting position of the ship and the corresponding actual avoidance behavior. By combining the requirements for the light range in COLREGS and support vector classification to supervise and learn the actual meeting data, a map of the ship encounter azimuth division was constructed. The map can serve as an accurate numerical basis for the division of marine encounter situations, maritime accident responsibility division, and intelligent ship collision avoidance decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十元完成签到,获得积分10
2秒前
从容向真完成签到,获得积分10
4秒前
梁堂博发布了新的文献求助10
5秒前
8秒前
听话的延恶完成签到 ,获得积分10
10秒前
懵懂的枫叶完成签到,获得积分10
11秒前
12秒前
鲤鱼青雪完成签到,获得积分10
12秒前
14秒前
汉堡包应助春风明月采纳,获得30
15秒前
19秒前
狗屁大侠发布了新的文献求助10
19秒前
愤怒的翅膀完成签到,获得积分10
21秒前
22秒前
芝芝莓莓完成签到 ,获得积分10
22秒前
keyaner发布了新的文献求助10
23秒前
OuO完成签到,获得积分10
24秒前
26秒前
阿三猫i完成签到 ,获得积分10
27秒前
有魅力的白玉完成签到 ,获得积分10
27秒前
cocobear完成签到 ,获得积分10
27秒前
28秒前
四叶草完成签到 ,获得积分10
28秒前
keyaner完成签到,获得积分10
29秒前
霸气鞯完成签到 ,获得积分10
29秒前
遇见完成签到 ,获得积分10
31秒前
爆米花应助初次见面采纳,获得10
34秒前
Migrol完成签到,获得积分10
34秒前
yqt完成签到,获得积分10
35秒前
三杠完成签到,获得积分10
36秒前
狗屁大侠完成签到,获得积分10
36秒前
COCO完成签到 ,获得积分10
37秒前
37秒前
Diego完成签到,获得积分10
38秒前
38秒前
欢喜板凳完成签到 ,获得积分10
38秒前
甜甜的又蓝完成签到 ,获得积分10
39秒前
秦奎完成签到,获得积分10
41秒前
天天快乐应助lpp采纳,获得10
42秒前
43秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378722
求助须知:如何正确求助?哪些是违规求助? 4503127
关于积分的说明 14015166
捐赠科研通 4411843
什么是DOI,文献DOI怎么找? 2423519
邀请新用户注册赠送积分活动 1416462
关于科研通互助平台的介绍 1393901