Ship encounter azimuth map division based on automatic identification system data and support vector classification

师(数学) 方位角 鉴定(生物学) 矢量地图 遥感 支持向量机 计算机科学 海洋工程 人工智能 数据挖掘 地理 工程类 生物 数学 算术 植物 几何学
作者
Miao Gao,Guangming Shi,Jiao Liu
出处
期刊:Ocean Engineering [Elsevier]
卷期号:213: 107636-107636 被引量:15
标识
DOI:10.1016/j.oceaneng.2020.107636
摘要

Abstract Currently, the division of encounter situations and collision avoidance decisions both depend on the individual subjective judgment of officers under conditions of extraordinary complexity and randomness. Ambiguities and contradictions are present among the existing quantifications of azimuth division from the International Regulations for Preventing Collisions at Sea (COLREGS), radar collision avoidance diagrams, and expert questionnaire results. At present, there is no unified and practical division model for the variety of azimuth divisions encountered by ships. With the development of intelligent ship technology, the realization of maritime autonomous surface ships is possible. However, more obscure problems must be accurately defined. Moreover, the requirements for an accurate division of the ship encounter situation in maritime accident analysis are becoming more intense. Additional requirements have been imposed on the division of azimuth, and ship encounters have been quantified into multiple features for machine learning. In this study, automatic identification system data near Zhoushan Port were used to reproduce the relative motion process of ships, and extract the meeting position of the ship and the corresponding actual avoidance behavior. By combining the requirements for the light range in COLREGS and support vector classification to supervise and learn the actual meeting data, a map of the ship encounter azimuth division was constructed. The map can serve as an accurate numerical basis for the division of marine encounter situations, maritime accident responsibility division, and intelligent ship collision avoidance decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
XShu发布了新的文献求助10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得30
刚刚
传奇3应助科研通管家采纳,获得30
刚刚
Owen应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
文艺明杰发布了新的文献求助100
2秒前
所所应助嘟嘟采纳,获得10
2秒前
4秒前
HMZ完成签到,获得积分10
4秒前
研友_LkYKJZ完成签到,获得积分10
4秒前
田様应助Khr1stINK采纳,获得10
4秒前
4秒前
风趣夜云完成签到,获得积分10
5秒前
5秒前
真实的一鸣完成签到,获得积分10
5秒前
调研昵称发布了新的文献求助50
6秒前
7秒前
yKkkkkk发布了新的文献求助10
7秒前
怎么可能会凉完成签到 ,获得积分10
8秒前
10秒前
10秒前
大大完成签到,获得积分10
11秒前
11秒前
11秒前
Xiaoxiao应助greenPASS666采纳,获得10
11秒前
现代的秋白完成签到,获得积分10
11秒前
从容的盼晴完成签到,获得积分10
11秒前
scvrl完成签到,获得积分10
12秒前
12秒前
楼寒天发布了新的文献求助10
12秒前
请叫我风吹麦浪应助C2采纳,获得10
14秒前
xlj发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808