已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ship encounter azimuth map division based on automatic identification system data and support vector classification

师(数学) 方位角 鉴定(生物学) 矢量地图 遥感 支持向量机 计算机科学 海洋工程 人工智能 数据挖掘 地理 工程类 生物 数学 算术 植物 几何学
作者
Miao Gao,Guangming Shi,Jiao Liu
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:213: 107636-107636 被引量:15
标识
DOI:10.1016/j.oceaneng.2020.107636
摘要

Abstract Currently, the division of encounter situations and collision avoidance decisions both depend on the individual subjective judgment of officers under conditions of extraordinary complexity and randomness. Ambiguities and contradictions are present among the existing quantifications of azimuth division from the International Regulations for Preventing Collisions at Sea (COLREGS), radar collision avoidance diagrams, and expert questionnaire results. At present, there is no unified and practical division model for the variety of azimuth divisions encountered by ships. With the development of intelligent ship technology, the realization of maritime autonomous surface ships is possible. However, more obscure problems must be accurately defined. Moreover, the requirements for an accurate division of the ship encounter situation in maritime accident analysis are becoming more intense. Additional requirements have been imposed on the division of azimuth, and ship encounters have been quantified into multiple features for machine learning. In this study, automatic identification system data near Zhoushan Port were used to reproduce the relative motion process of ships, and extract the meeting position of the ship and the corresponding actual avoidance behavior. By combining the requirements for the light range in COLREGS and support vector classification to supervise and learn the actual meeting data, a map of the ship encounter azimuth division was constructed. The map can serve as an accurate numerical basis for the division of marine encounter situations, maritime accident responsibility division, and intelligent ship collision avoidance decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助威武小猫咪采纳,获得10
2秒前
2秒前
6秒前
菜鸡游泳发布了新的文献求助10
7秒前
SiO2完成签到 ,获得积分0
8秒前
8秒前
君寻完成签到 ,获得积分10
9秒前
9秒前
9秒前
小蘑菇应助babalababa采纳,获得10
10秒前
10秒前
11秒前
中标发布了新的文献求助10
13秒前
13秒前
13秒前
公西凝芙发布了新的文献求助10
15秒前
17秒前
18秒前
18秒前
18秒前
Royal耗子完成签到,获得积分10
20秒前
haobhaobhaob发布了新的文献求助10
21秒前
22秒前
科研通AI5应助豆豆可采纳,获得10
22秒前
23秒前
Royal耗子发布了新的文献求助10
23秒前
慕青应助诺贝尔一直讲采纳,获得30
24秒前
公西凝芙完成签到,获得积分10
24秒前
科研通AI6应助弎夜采纳,获得30
24秒前
langqi发布了新的文献求助10
25秒前
Miya发布了新的文献求助30
25秒前
26秒前
haobhaobhaob完成签到,获得积分10
28秒前
凯蒂发布了新的文献求助10
29秒前
31秒前
哎健身发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
33秒前
momoni完成签到 ,获得积分10
33秒前
优秀的山芙关注了科研通微信公众号
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542