已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unsupervised Deep Image Fusion With Structure Tensor Representations

人工智能 计算机科学 图像融合 深度学习 卷积神经网络 模式识别(心理学) 特征提取 图像处理 图像(数学) 光学(聚焦) 特征检测(计算机视觉) 计算机视觉 特征(语言学) 哲学 物理 光学 语言学
作者
Hyungjoo Jung,Youngjung Kim,Hyunsung Jang,Namkoo Ha,Kwanghoon Sohn
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 3845-3858 被引量:147
标识
DOI:10.1109/tip.2020.2966075
摘要

Convolutional neural networks (CNNs) have facilitated substantial progress on various problems in computer vision and image processing. However, applying them to image fusion has remained challenging due to the lack of the labelled data for supervised learning. This paper introduces a deep image fusion network (DIF-Net), an unsupervised deep learning framework for image fusion. The DIF-Net parameterizes the entire processes of image fusion, comprising of feature extraction, feature fusion, and image reconstruction, using a CNN. The purpose of DIF-Net is to generate an output image which has an identical contrast to high-dimensional input images. To realize this, we propose an unsupervised loss function using the structure tensor representation of the multi-channel image contrasts. Different from traditional fusion methods that involve time-consuming optimization or iterative procedures to obtain the results, our loss function is minimized by a stochastic deep learning solver with large-scale examples. Consequently, the proposed method can produce fused images that preserve source image details through a single forward network trained without reference ground-truth labels. The proposed method has broad applicability to various image fusion problems, including multi-spectral, multi-focus, and multi-exposure image fusions. Quantitative and qualitative evaluations show that the proposed technique outperforms existing state-of-the-art approaches for various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奋斗傲芙发布了新的文献求助10
2秒前
wpz完成签到,获得积分10
3秒前
快乐映秋完成签到,获得积分10
3秒前
嘻嘻哈哈应助带虾的烧麦采纳,获得10
3秒前
4秒前
乐乐应助Chillym采纳,获得10
4秒前
YYDS54完成签到,获得积分10
4秒前
huangfan发布了新的文献求助10
6秒前
端庄的飞阳完成签到 ,获得积分10
7秒前
脑洞疼应助one采纳,获得30
7秒前
cwn完成签到 ,获得积分10
8秒前
8秒前
12秒前
printzhao发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
kentonchow应助铮铮采纳,获得10
14秒前
傻丢完成签到 ,获得积分10
16秒前
16秒前
风趣小蜜蜂完成签到 ,获得积分10
16秒前
慕青应助五音不全汪采纳,获得10
17秒前
归尘发布了新的文献求助10
19秒前
奕柯完成签到,获得积分10
20秒前
科研通AI6应助小甘采纳,获得30
20秒前
21秒前
bkagyin应助杭谷波采纳,获得10
21秒前
FashionBoy应助Jonathan采纳,获得10
21秒前
23秒前
云帆发布了新的文献求助10
23秒前
24秒前
24秒前
24秒前
孤独的以菱完成签到 ,获得积分10
27秒前
一只快乐的小比熊完成签到 ,获得积分10
27秒前
111发布了新的文献求助10
27秒前
4114发布了新的文献求助10
30秒前
wx发布了新的文献求助10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356