人工智能
计算机科学
图像融合
深度学习
卷积神经网络
模式识别(心理学)
特征提取
图像处理
图像(数学)
光学(聚焦)
特征检测(计算机视觉)
计算机视觉
特征(语言学)
哲学
物理
光学
语言学
作者
Hyungjoo Jung,Youngjung Kim,Hyunsung Jang,Namkoo Ha,Kwanghoon Sohn
出处
期刊:IEEE transactions on image processing
[Institute of Electrical and Electronics Engineers]
日期:2020-01-01
卷期号:29: 3845-3858
被引量:126
标识
DOI:10.1109/tip.2020.2966075
摘要
Convolutional neural networks (CNNs) have facilitated substantial progress on various problems in computer vision and image processing. However, applying them to image fusion has remained challenging due to the lack of the labelled data for supervised learning. This paper introduces a deep image fusion network (DIF-Net), an unsupervised deep learning framework for image fusion. The DIF-Net parameterizes the entire processes of image fusion, comprising of feature extraction, feature fusion, and image reconstruction, using a CNN. The purpose of DIF-Net is to generate an output image which has an identical contrast to high-dimensional input images. To realize this, we propose an unsupervised loss function using the structure tensor representation of the multi-channel image contrasts. Different from traditional fusion methods that involve time-consuming optimization or iterative procedures to obtain the results, our loss function is minimized by a stochastic deep learning solver with large-scale examples. Consequently, the proposed method can produce fused images that preserve source image details through a single forward network trained without reference ground-truth labels. The proposed method has broad applicability to various image fusion problems, including multi-spectral, multi-focus, and multi-exposure image fusions. Quantitative and qualitative evaluations show that the proposed technique outperforms existing state-of-the-art approaches for various applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI