亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convergence Time Optimization for Federated Learning over Wireless Networks

计算机科学 基站 选择(遗传算法) 资源配置 概率逻辑 电信线路 趋同(经济学) 无线局域网 最优化问题 无线 无线网络 计算机网络 人工智能 算法 电信 经济 经济增长
作者
Mingzhe Chen,H. Vincent Poor,Walid Saad,Shuguang Cui
出处
期刊:Cornell University - arXiv 被引量:16
标识
DOI:10.48550/arxiv.2001.07845
摘要

In this paper, the convergence time of federated learning (FL), when deployed over a realistic wireless network, is studied. In particular, a wireless network is considered in which wireless users transmit their local FL models (trained using their locally collected data) to a base station (BS). The BS, acting as a central controller, generates a global FL model using the received local FL models and broadcasts it back to all users. Due to the limited number of resource blocks (RBs) in a wireless network, only a subset of users can be selected to transmit their local FL model parameters to the BS at each learning step. Moreover, since each user has unique training data samples, the BS prefers to include all local user FL models to generate a converged global FL model. Hence, the FL performance and convergence time will be significantly affected by the user selection scheme. Therefore, it is necessary to design an appropriate user selection scheme that enables users of higher importance to be selected more frequently. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize the FL convergence time while optimizing the FL performance. To solve this problem, a probabilistic user selection scheme is proposed such that the BS is connected to the users whose local FL models have significant effects on its global FL model with high probabilities. Given the user selection policy, the uplink RB allocation can be determined. To further reduce the FL convergence time, artificial neural networks (ANNs) are used to estimate the local FL models of the users that are not allocated any RBs for local FL model transmission at each given learning step, which enables the BS to enhance its global FL model and improve the FL convergence speed and performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小二郎应助傲娇的冷霜采纳,获得20
4秒前
5秒前
FashionBoy应助西瓜二郎采纳,获得30
6秒前
赘婿应助傲娇的冷霜采纳,获得30
17秒前
18秒前
昔年若许完成签到,获得积分10
23秒前
西瓜二郎发布了新的文献求助30
24秒前
39秒前
科研通AI5应助jacs111采纳,获得10
41秒前
cy0824完成签到 ,获得积分10
43秒前
50秒前
直率的笑翠完成签到 ,获得积分10
51秒前
54秒前
jacs111发布了新的文献求助10
58秒前
Jimmy完成签到 ,获得积分10
1分钟前
脑洞疼应助儒雅老太采纳,获得10
1分钟前
闪闪蜜粉完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
hkxfg发布了新的文献求助10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
jyy完成签到,获得积分10
1分钟前
Lucas应助茶叶蛋采纳,获得10
1分钟前
2分钟前
笨笨芯发布了新的文献求助30
2分钟前
独特冰安完成签到,获得积分10
2分钟前
星辰大海应助傲娇的冷霜采纳,获得30
2分钟前
2分钟前
2分钟前
MOD发布了新的文献求助10
2分钟前
MOD完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214