亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convergence Time Optimization for Federated Learning over Wireless Networks

计算机科学 基站 选择(遗传算法) 资源配置 概率逻辑 电信线路 趋同(经济学) 无线局域网 最优化问题 无线 无线网络 计算机网络 人工智能 算法 电信 经济 经济增长
作者
Mingzhe Chen,H. Vincent Poor,Walid Saad,Shuguang Cui
出处
期刊:Cornell University - arXiv 被引量:16
标识
DOI:10.48550/arxiv.2001.07845
摘要

In this paper, the convergence time of federated learning (FL), when deployed over a realistic wireless network, is studied. In particular, a wireless network is considered in which wireless users transmit their local FL models (trained using their locally collected data) to a base station (BS). The BS, acting as a central controller, generates a global FL model using the received local FL models and broadcasts it back to all users. Due to the limited number of resource blocks (RBs) in a wireless network, only a subset of users can be selected to transmit their local FL model parameters to the BS at each learning step. Moreover, since each user has unique training data samples, the BS prefers to include all local user FL models to generate a converged global FL model. Hence, the FL performance and convergence time will be significantly affected by the user selection scheme. Therefore, it is necessary to design an appropriate user selection scheme that enables users of higher importance to be selected more frequently. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize the FL convergence time while optimizing the FL performance. To solve this problem, a probabilistic user selection scheme is proposed such that the BS is connected to the users whose local FL models have significant effects on its global FL model with high probabilities. Given the user selection policy, the uplink RB allocation can be determined. To further reduce the FL convergence time, artificial neural networks (ANNs) are used to estimate the local FL models of the users that are not allocated any RBs for local FL model transmission at each given learning step, which enables the BS to enhance its global FL model and improve the FL convergence speed and performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
晁子枫完成签到 ,获得积分10
6秒前
Bambi完成签到,获得积分10
8秒前
Criminology34举报失眠成协求助涉嫌违规
10秒前
Bambi发布了新的文献求助10
12秒前
大胆的碧菡完成签到,获得积分10
14秒前
yanglinhai完成签到 ,获得积分10
16秒前
北川宾一完成签到,获得积分20
19秒前
zbzfp完成签到,获得积分10
26秒前
小新完成签到 ,获得积分10
27秒前
32秒前
冬烜完成签到 ,获得积分10
32秒前
37秒前
56发布了新的文献求助10
41秒前
tuanzi完成签到 ,获得积分10
45秒前
Lucas应助科研通管家采纳,获得10
47秒前
思源应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
51秒前
威武灵阳完成签到,获得积分10
55秒前
科研通AI2S应助威武灵阳采纳,获得10
57秒前
酒渡完成签到,获得积分10
1分钟前
Akim应助Cmqq采纳,获得10
1分钟前
1分钟前
王炸炸完成签到,获得积分10
1分钟前
1分钟前
远山笑你完成签到 ,获得积分10
1分钟前
Ash发布了新的文献求助10
1分钟前
1分钟前
wuwu7完成签到 ,获得积分10
1分钟前
Criminology34举报xiao双月求助涉嫌违规
1分钟前
1分钟前
小马甲应助Zenia采纳,获得10
1分钟前
1分钟前
1分钟前
56完成签到,获得积分20
1分钟前
文静人达发布了新的文献求助10
1分钟前
1分钟前
Zenia发布了新的文献求助10
1分钟前
帅气善斓应助56采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599706
求助须知:如何正确求助?哪些是违规求助? 4685410
关于积分的说明 14838480
捐赠科研通 4670043
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898