重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Convergence Time Optimization for Federated Learning over Wireless Networks

计算机科学 基站 选择(遗传算法) 资源配置 概率逻辑 电信线路 趋同(经济学) 无线局域网 最优化问题 无线 无线网络 计算机网络 人工智能 算法 电信 经济 经济增长
作者
Mingzhe Chen,H. Vincent Poor,Walid Saad,Shuguang Cui
出处
期刊:Cornell University - arXiv 被引量:16
标识
DOI:10.48550/arxiv.2001.07845
摘要

In this paper, the convergence time of federated learning (FL), when deployed over a realistic wireless network, is studied. In particular, a wireless network is considered in which wireless users transmit their local FL models (trained using their locally collected data) to a base station (BS). The BS, acting as a central controller, generates a global FL model using the received local FL models and broadcasts it back to all users. Due to the limited number of resource blocks (RBs) in a wireless network, only a subset of users can be selected to transmit their local FL model parameters to the BS at each learning step. Moreover, since each user has unique training data samples, the BS prefers to include all local user FL models to generate a converged global FL model. Hence, the FL performance and convergence time will be significantly affected by the user selection scheme. Therefore, it is necessary to design an appropriate user selection scheme that enables users of higher importance to be selected more frequently. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize the FL convergence time while optimizing the FL performance. To solve this problem, a probabilistic user selection scheme is proposed such that the BS is connected to the users whose local FL models have significant effects on its global FL model with high probabilities. Given the user selection policy, the uplink RB allocation can be determined. To further reduce the FL convergence time, artificial neural networks (ANNs) are used to estimate the local FL models of the users that are not allocated any RBs for local FL model transmission at each given learning step, which enables the BS to enhance its global FL model and improve the FL convergence speed and performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助weilao采纳,获得10
刚刚
刚刚
昊昊发布了新的文献求助10
刚刚
刚刚
刚刚
涂飞完成签到,获得积分10
1秒前
beak111发布了新的文献求助10
1秒前
小远远应助专注雁桃采纳,获得10
1秒前
雷欣欣发布了新的文献求助10
2秒前
guatian完成签到,获得积分10
2秒前
2秒前
Owen应助yuan采纳,获得10
2秒前
落寞惮发布了新的文献求助10
2秒前
舒心如凡发布了新的文献求助10
3秒前
栗悟饭发布了新的文献求助10
3秒前
勤劳笑槐完成签到,获得积分10
3秒前
4秒前
Vera发布了新的文献求助10
4秒前
今后应助草莓采纳,获得10
4秒前
独特振家完成签到,获得积分10
4秒前
科研通AI6应助阳光元正采纳,获得30
4秒前
5秒前
5秒前
李爱国应助zhuzhuxia采纳,获得30
5秒前
6秒前
6秒前
6秒前
7秒前
酷酷凤灵完成签到,获得积分20
7秒前
7秒前
wyg117发布了新的文献求助10
7秒前
orixero应助胖瓶儿采纳,获得10
8秒前
choup53发布了新的文献求助10
8秒前
香蕉觅云应助欧科狗采纳,获得10
8秒前
bk完成签到,获得积分10
8秒前
浮游应助FLZLC采纳,获得10
9秒前
9秒前
酷波er应助水木年华采纳,获得10
10秒前
情怀应助霸气的小熊猫采纳,获得10
10秒前
Crazy发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467266
求助须知:如何正确求助?哪些是违规求助? 4570917
关于积分的说明 14327656
捐赠科研通 4497524
什么是DOI,文献DOI怎么找? 2463982
邀请新用户注册赠送积分活动 1452857
关于科研通互助平台的介绍 1427654