Convergence Time Optimization for Federated Learning over Wireless Networks

计算机科学 基站 选择(遗传算法) 资源配置 概率逻辑 电信线路 趋同(经济学) 无线局域网 最优化问题 无线 无线网络 计算机网络 人工智能 算法 电信 经济 经济增长
作者
Mingzhe Chen,H. Vincent Poor,Walid Saad,Shuguang Cui
出处
期刊:Cornell University - arXiv 被引量:16
标识
DOI:10.48550/arxiv.2001.07845
摘要

In this paper, the convergence time of federated learning (FL), when deployed over a realistic wireless network, is studied. In particular, a wireless network is considered in which wireless users transmit their local FL models (trained using their locally collected data) to a base station (BS). The BS, acting as a central controller, generates a global FL model using the received local FL models and broadcasts it back to all users. Due to the limited number of resource blocks (RBs) in a wireless network, only a subset of users can be selected to transmit their local FL model parameters to the BS at each learning step. Moreover, since each user has unique training data samples, the BS prefers to include all local user FL models to generate a converged global FL model. Hence, the FL performance and convergence time will be significantly affected by the user selection scheme. Therefore, it is necessary to design an appropriate user selection scheme that enables users of higher importance to be selected more frequently. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize the FL convergence time while optimizing the FL performance. To solve this problem, a probabilistic user selection scheme is proposed such that the BS is connected to the users whose local FL models have significant effects on its global FL model with high probabilities. Given the user selection policy, the uplink RB allocation can be determined. To further reduce the FL convergence time, artificial neural networks (ANNs) are used to estimate the local FL models of the users that are not allocated any RBs for local FL model transmission at each given learning step, which enables the BS to enhance its global FL model and improve the FL convergence speed and performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dreamwalk完成签到 ,获得积分10
1秒前
sunwsmile完成签到 ,获得积分10
4秒前
柚子完成签到 ,获得积分10
4秒前
烂漫笑晴完成签到 ,获得积分10
6秒前
su完成签到 ,获得积分0
8秒前
游01完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
15秒前
Medneuron完成签到,获得积分10
26秒前
Alvin完成签到 ,获得积分10
27秒前
kyle完成签到 ,获得积分10
31秒前
智者雨人完成签到 ,获得积分10
32秒前
34秒前
嘚儿塔完成签到 ,获得积分10
39秒前
42秒前
竹焚完成签到 ,获得积分10
43秒前
Jasper应助Medneuron采纳,获得10
46秒前
王晓卉完成签到 ,获得积分10
48秒前
leaolf完成签到,获得积分0
49秒前
壹z完成签到 ,获得积分10
52秒前
南宫清涟完成签到 ,获得积分10
52秒前
sponge完成签到 ,获得积分10
52秒前
葱饼完成签到 ,获得积分10
52秒前
学医的小胖子完成签到 ,获得积分10
54秒前
火星上的柏柳完成签到 ,获得积分10
56秒前
59秒前
Never发布了新的文献求助10
1分钟前
孙老师完成签到 ,获得积分10
1分钟前
光亮若翠完成签到,获得积分10
1分钟前
首席或雪月完成签到,获得积分10
1分钟前
Hunter完成签到,获得积分10
1分钟前
GPTea应助科研通管家采纳,获得150
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
pp完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
笨笨山芙完成签到 ,获得积分10
1分钟前
虞无声完成签到,获得积分10
1分钟前
science完成签到 ,获得积分10
1分钟前
1分钟前
muzi完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910625
求助须知:如何正确求助?哪些是违规求助? 4186398
关于积分的说明 12999415
捐赠科研通 3953889
什么是DOI,文献DOI怎么找? 2168175
邀请新用户注册赠送积分活动 1186601
关于科研通互助平台的介绍 1093802