光学
信号(编程语言)
物理
能量(信号处理)
脉搏(音乐)
放大器
光电子学
计算机科学
CMOS芯片
量子力学
探测器
程序设计语言
作者
Qian Cao,Franz X. Kärtner,Guoqing Chang
出处
期刊:Optics Express
[The Optical Society]
日期:2020-01-09
卷期号:28 (2): 1369-1369
被引量:18
摘要
Frequency combs in the mid-IR wavelength are usually implemented by difference-frequency generation (DFG) that mixes pump pulses and signal pulses. Different from most optical parametric amplifiers that operate at a typical low repetition rate of <0.1 MHz, mid-IR frequency combs require that pump/signal pulse repetition rate must be at least as high as tens of MHz (normally >30 MHz). The DFG mixing high repetition rate (HRR) pulses limits the allowed pulse energy to prevent crystal damage. In this paper, we numerically investigate HRR DFG with a focus on the energy scalability of idler pulses. We show that HRR DFG-unlike optical parametric amplifiers-may operate in the linear regime, in which the idler pulse energy scales linearly with respect to the pump/signal pulse energy. Our simulation results suggest an efficient approach to energy scaling the idler mid-IR pulses in a HRR DFG: increase the signal pulse energy to the same level as the pump pulse energy. We also show that DFG seeded by pump/signal pulses at ∼2-µm range benefits from reduced group-velocity mismatch and exhibits better idler energy scalability. For example, 44.2-nJ pulses at 9.87 µm can be achieved by mixing 500-nJ, 2.0-µm pump pulses and 100-nJ, 2.508-µm signal pulses in a 2-mm-thick GaSe crystal. At the end of this paper, we show that such high-energy signal pulses can be derived from the pump pulses using a recently invented fiber-optic method. Therefore, implementation of high-power (>2 W) longwave mid-IR frequency combs is practically feasible.
科研通智能强力驱动
Strongly Powered by AbleSci AI