Towards high power longwave mid-IR frequency combs: power scalability of high repetition-rate difference-frequency generation

光学 信号(编程语言) 物理 能量(信号处理) 脉搏(音乐) 放大器 光电子学 计算机科学 CMOS芯片 量子力学 探测器 程序设计语言
作者
Qian Cao,Franz X. Kärtner,Guoqing Chang
出处
期刊:Optics Express [The Optical Society]
卷期号:28 (2): 1369-1369 被引量:18
标识
DOI:10.1364/oe.28.001369
摘要

Frequency combs in the mid-IR wavelength are usually implemented by difference-frequency generation (DFG) that mixes pump pulses and signal pulses. Different from most optical parametric amplifiers that operate at a typical low repetition rate of <0.1 MHz, mid-IR frequency combs require that pump/signal pulse repetition rate must be at least as high as tens of MHz (normally >30 MHz). The DFG mixing high repetition rate (HRR) pulses limits the allowed pulse energy to prevent crystal damage. In this paper, we numerically investigate HRR DFG with a focus on the energy scalability of idler pulses. We show that HRR DFG-unlike optical parametric amplifiers-may operate in the linear regime, in which the idler pulse energy scales linearly with respect to the pump/signal pulse energy. Our simulation results suggest an efficient approach to energy scaling the idler mid-IR pulses in a HRR DFG: increase the signal pulse energy to the same level as the pump pulse energy. We also show that DFG seeded by pump/signal pulses at ∼2-µm range benefits from reduced group-velocity mismatch and exhibits better idler energy scalability. For example, 44.2-nJ pulses at 9.87 µm can be achieved by mixing 500-nJ, 2.0-µm pump pulses and 100-nJ, 2.508-µm signal pulses in a 2-mm-thick GaSe crystal. At the end of this paper, we show that such high-energy signal pulses can be derived from the pump pulses using a recently invented fiber-optic method. Therefore, implementation of high-power (>2 W) longwave mid-IR frequency combs is practically feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助积极的凌波采纳,获得10
刚刚
SV关注了科研通微信公众号
刚刚
白蕲完成签到,获得积分10
1秒前
调研昵称发布了新的文献求助20
1秒前
柔弱凡松发布了新的文献求助10
2秒前
yyds完成签到,获得积分10
3秒前
认真子默完成签到,获得积分10
3秒前
3秒前
3秒前
mylian完成签到,获得积分10
3秒前
5秒前
5秒前
SY发布了新的文献求助10
5秒前
可爱小哪吒完成签到,获得积分10
5秒前
斯文败类应助doudou采纳,获得10
6秒前
苹果完成签到,获得积分10
6秒前
6秒前
一颗咸蛋黄完成签到 ,获得积分20
8秒前
打打应助5477采纳,获得10
8秒前
灵巧坤发布了新的文献求助30
8秒前
8秒前
小猴完成签到,获得积分10
9秒前
Raymond应助NANA采纳,获得10
10秒前
Sean完成签到 ,获得积分10
10秒前
10秒前
无情山水发布了新的文献求助10
11秒前
锦纹完成签到,获得积分10
11秒前
南桥发布了新的文献求助10
11秒前
11秒前
伶俐的书白完成签到,获得积分10
12秒前
科研通AI5应助威武诺言采纳,获得10
12秒前
12秒前
LXL完成签到,获得积分10
12秒前
杳鸢应助三金采纳,获得20
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
英俊的铭应助yyj采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762