变分不等式
数学
数学优化
双层优化
集合(抽象数据类型)
点(几何)
不平等
最优化问题
应用数学
数学分析
计算机科学
几何学
程序设计语言
作者
Nazih Abderrazzak Gadhi
出处
期刊:Optimization
[Informa]
日期:2021-02-19
卷期号:71 (10): 2891-2905
被引量:4
标识
DOI:10.1080/02331934.2021.1888088
摘要
In this paper, we give some results which constitute an application of directional convexificators recently introduced by Dempe and Pilecka [Necessary optimality conditions for optimistic bilevel programming problems using set-valued programming. J Global Optim. 2015;61:769–788]. After establishing mean value conditions in terms of directional convexificators, we formulate variational inequalities of Stampacchia and Minty type in terms of directional convexificators and use these variational inequalities as a tool to find out necessary and sufficient conditions for a point to be an optimal solution of an inherent optimization problem. An example illustrating our findings is also given.
科研通智能强力驱动
Strongly Powered by AbleSci AI