Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach

抗压强度 Boosting(机器学习) 计算机科学 人工神经网络 支持向量机 试验数据 机器学习 人工智能 模式识别(心理学) 材料科学 复合材料 程序设计语言
作者
De‐Cheng Feng,Zhentao Liu,Xiaodan Wang,Chen Yin,Jia-qi Chang,Dong-Fang Wei,Zhao Hua Jiang
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:230: 117000-117000 被引量:354
标识
DOI:10.1016/j.conbuildmat.2019.117000
摘要

In this paper, an intelligent approach based on the machine learning technique is proposed for predicting the compressive strength of concrete. This approach employs the adaptive boosting algorithm to construct a strong learner by integrating several weak learners, which can find the mapping between the input data and output data. The weak learner whose predicting error is small will have a larger weight in the entire system, thus the overall accuracy of the strong learner will be enhanced. A total of 1030 sets of concrete compressive strength tests is collected to train and test the learners, in which the concrete mixture components (e.g., coarse/fine aggregates, cement, water, additive, etc.) and the curing time are set as the input data while the compressive strength value is set as the output data. The proposed approach is validated through a 10-fold cross validation method, and reaches an average accuracy of over 95% in sense of determination coefficient. In addition, a new dataset of 103 samples for concrete compressive strength is also adopted to demonstrate the generalization power of the proposed mode. The proposed approach is also compared to some other individual machine learning techniques that are already applied in this field, e.g., artificial neural network (ANN) and support vector machine (SVM), and shows superior advantages over these methods. Finally, the influence of some key factors in the adaptive boosting approach is also investigated, e.g., the amount of training data, the choice of weak learner, and the influence of the sensitivity and number of the input parameters. It is shown that using 80% of the total data for training can obtain acceptable prediction results and decision tree is the best choice for the weak learner in the boosting framework. Also, the importances of different input variables are obtained based on the sensitivity analysis results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh123发布了新的文献求助10
3秒前
包包完成签到,获得积分10
3秒前
MathFun完成签到 ,获得积分10
3秒前
4秒前
共享精神应助糊涂涂采纳,获得10
5秒前
fxx2021发布了新的文献求助10
5秒前
美式加冰发布了新的文献求助10
6秒前
Ivy发布了新的文献求助10
7秒前
maodou完成签到,获得积分10
7秒前
8秒前
雾霭迷茫完成签到 ,获得积分10
8秒前
赘婿应助hhh123采纳,获得10
8秒前
9秒前
子铭完成签到,获得积分10
9秒前
usrcu发布了新的文献求助10
9秒前
BaekHyun完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
DONGLK发布了新的文献求助10
12秒前
元谷雪发布了新的文献求助10
12秒前
pass完成签到,获得积分10
12秒前
12秒前
科研通AI2S应助希勤采纳,获得10
13秒前
13秒前
13秒前
傲娇诗完成签到,获得积分10
15秒前
15秒前
pass发布了新的文献求助10
15秒前
科研通AI2S应助lxlcx采纳,获得10
16秒前
16秒前
Wenpandaen发布了新的文献求助10
16秒前
louziqi发布了新的文献求助10
16秒前
17秒前
傲娇诗发布了新的文献求助10
20秒前
fxx2021发布了新的文献求助10
20秒前
youwenjing11发布了新的文献求助10
20秒前
噼里啪啦发布了新的文献求助10
21秒前
一二完成签到,获得积分10
22秒前
炸毛胡图图完成签到 ,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134881
求助须知:如何正确求助?哪些是违规求助? 2785770
关于积分的说明 7774093
捐赠科研通 2441601
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825