过度拟合
极限学习机
人工智能
机器学习
稳健性(进化)
计算机科学
人工神经网络
生物系统
数学
化学
基因
生物化学
生物
作者
Zi‐Liang Liu,Feng Nan,Xia Zheng,Magdalena Zielińska,Xu Duan,Lizhen Deng,Jun Wang,Wei Wu,Zhen‐Jiang Gao,Hong‐Wei Xiao
出处
期刊:Drying Technology
[Taylor & Francis]
日期:2019-10-10
卷期号:38 (14): 1869-1881
被引量:42
标识
DOI:10.1080/07373937.2019.1675077
摘要
Color is an important appearance attribute of fruits and vegetables during drying processing, as it influences consumer's preference and acceptability. Establishing color change kinetics model is an effective way for better understanding the quality changes and optimization of drying process. However, it is difficult to quickly and accurately predict color change kinetics during drying as it is highly nonlinear, complex, dynamic, and multivariable. To alleviate this problem, a new model based on extreme learning machine integrated Bayesian methods (BELM) has been developed for the prediction of color changes of mushroom slices during drying process. The effects of drying temperature (55, 60, 65, 70, and 75 °C) and air velocity (3, 6, 9, and 12 m/s) on color change kinetics of mushroom slices during hot air impingement drying were firstly explored and the experimental results indicated that both drying temperature and air velocity significantly affected the color attributes. Then, to validate the robustness and effectiveness of BELM, the basic extreme learning machine (ELM) and traditional back-propagation neural network (BPNN) models have also been employed to predict the color quality. In terms of prediction accuracy and execution time, BELM could achieve least similar or even better performance than ELM and BPNN. It overcame the overfitting problems of ELM. The test results of optimal BELM model by two new cases revealed that the lowest R2 and highest RMSE of BELM model were 0.9725 and 0.0563, respectively. The absolute values of relative errors between the actual and predicted values were lower than 8.5%.
科研通智能强力驱动
Strongly Powered by AbleSci AI