Color prediction of mushroom slices during drying using Bayesian extreme learning machine

过度拟合 极限学习机 人工智能 机器学习 稳健性(进化) 计算机科学 人工神经网络 生物系统 数学 化学 生物化学 生物 基因
作者
Zi‐Liang Liu,Feng Nan,Xia Zheng,Magdalena Zielińska,Xu Duan,Lizhen Deng,Jun Wang,Wei Wu,Zhen‐Jiang Gao,Hong‐Wei Xiao
出处
期刊:Drying Technology [Informa]
卷期号:38 (14): 1869-1881 被引量:42
标识
DOI:10.1080/07373937.2019.1675077
摘要

Color is an important appearance attribute of fruits and vegetables during drying processing, as it influences consumer's preference and acceptability. Establishing color change kinetics model is an effective way for better understanding the quality changes and optimization of drying process. However, it is difficult to quickly and accurately predict color change kinetics during drying as it is highly nonlinear, complex, dynamic, and multivariable. To alleviate this problem, a new model based on extreme learning machine integrated Bayesian methods (BELM) has been developed for the prediction of color changes of mushroom slices during drying process. The effects of drying temperature (55, 60, 65, 70, and 75 °C) and air velocity (3, 6, 9, and 12 m/s) on color change kinetics of mushroom slices during hot air impingement drying were firstly explored and the experimental results indicated that both drying temperature and air velocity significantly affected the color attributes. Then, to validate the robustness and effectiveness of BELM, the basic extreme learning machine (ELM) and traditional back-propagation neural network (BPNN) models have also been employed to predict the color quality. In terms of prediction accuracy and execution time, BELM could achieve least similar or even better performance than ELM and BPNN. It overcame the overfitting problems of ELM. The test results of optimal BELM model by two new cases revealed that the lowest R2 and highest RMSE of BELM model were 0.9725 and 0.0563, respectively. The absolute values of relative errors between the actual and predicted values were lower than 8.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy完成签到,获得积分10
刚刚
1秒前
小二郎应助半斤采纳,获得10
1秒前
所所应助道可道采纳,获得10
3秒前
安容天发布了新的文献求助10
4秒前
yyy发布了新的文献求助10
4秒前
欢喜的小天鹅完成签到 ,获得积分10
5秒前
75986686发布了新的文献求助10
5秒前
5秒前
hui关注了科研通微信公众号
6秒前
6秒前
myyy完成签到 ,获得积分10
6秒前
科目三应助fffan采纳,获得10
6秒前
sustwanli完成签到,获得积分20
7秒前
yyy完成签到,获得积分10
7秒前
大模型应助一米阳光采纳,获得10
7秒前
芝士芋泥完成签到 ,获得积分10
8秒前
mirror发布了新的文献求助10
8秒前
雪寒关注了科研通微信公众号
9秒前
10秒前
佳佳发布了新的文献求助30
11秒前
星辰大海应助安容天采纳,获得10
11秒前
YQF完成签到,获得积分10
11秒前
光亮映之发布了新的文献求助10
11秒前
12秒前
天天快乐应助by采纳,获得10
12秒前
我是老大应助喜金少女采纳,获得10
13秒前
14秒前
14秒前
义气的友容完成签到,获得积分20
15秒前
安容天完成签到,获得积分10
16秒前
Nightfall发布了新的文献求助10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546508
求助须知:如何正确求助?哪些是违规求助? 3123622
关于积分的说明 9356111
捐赠科研通 2822292
什么是DOI,文献DOI怎么找? 1551314
邀请新用户注册赠送积分活动 723303
科研通“疑难数据库(出版商)”最低求助积分说明 713699