Color prediction of mushroom slices during drying using Bayesian extreme learning machine

过度拟合 极限学习机 人工智能 机器学习 稳健性(进化) 计算机科学 人工神经网络 生物系统 数学 化学 基因 生物化学 生物
作者
Zi‐Liang Liu,Feng Nan,Xia Zheng,Magdalena Zielińska,Xu Duan,Lizhen Deng,Jun Wang,Wei Wu,Zhen‐Jiang Gao,Hong‐Wei Xiao
出处
期刊:Drying Technology [Taylor & Francis]
卷期号:38 (14): 1869-1881 被引量:42
标识
DOI:10.1080/07373937.2019.1675077
摘要

Color is an important appearance attribute of fruits and vegetables during drying processing, as it influences consumer's preference and acceptability. Establishing color change kinetics model is an effective way for better understanding the quality changes and optimization of drying process. However, it is difficult to quickly and accurately predict color change kinetics during drying as it is highly nonlinear, complex, dynamic, and multivariable. To alleviate this problem, a new model based on extreme learning machine integrated Bayesian methods (BELM) has been developed for the prediction of color changes of mushroom slices during drying process. The effects of drying temperature (55, 60, 65, 70, and 75 °C) and air velocity (3, 6, 9, and 12 m/s) on color change kinetics of mushroom slices during hot air impingement drying were firstly explored and the experimental results indicated that both drying temperature and air velocity significantly affected the color attributes. Then, to validate the robustness and effectiveness of BELM, the basic extreme learning machine (ELM) and traditional back-propagation neural network (BPNN) models have also been employed to predict the color quality. In terms of prediction accuracy and execution time, BELM could achieve least similar or even better performance than ELM and BPNN. It overcame the overfitting problems of ELM. The test results of optimal BELM model by two new cases revealed that the lowest R2 and highest RMSE of BELM model were 0.9725 and 0.0563, respectively. The absolute values of relative errors between the actual and predicted values were lower than 8.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小雨完成签到,获得积分10
1秒前
自然水风完成签到,获得积分10
2秒前
陈尹蓝完成签到 ,获得积分10
6秒前
6秒前
呆萌的源智完成签到,获得积分10
8秒前
8秒前
hyd1640完成签到,获得积分10
10秒前
背后访风完成签到 ,获得积分10
10秒前
博博完成签到,获得积分10
11秒前
开心友儿发布了新的文献求助10
12秒前
欣欣发布了新的文献求助10
15秒前
与共完成签到 ,获得积分10
17秒前
杨雯娜完成签到 ,获得积分10
20秒前
开心友儿完成签到,获得积分10
22秒前
yuanletong完成签到 ,获得积分10
26秒前
Eton完成签到,获得积分10
26秒前
Ww完成签到,获得积分10
26秒前
英姑应助科研通管家采纳,获得10
29秒前
小二郎应助科研通管家采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得10
29秒前
打打应助科研通管家采纳,获得10
29秒前
李健应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
30秒前
CyrusSo524应助科研通管家采纳,获得10
30秒前
今后应助科研通管家采纳,获得10
30秒前
酷波er应助科研通管家采纳,获得20
30秒前
领导范儿应助科研通管家采纳,获得10
30秒前
JamesPei应助科研通管家采纳,获得10
30秒前
领导范儿应助科研通管家采纳,获得10
30秒前
所所应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
康达完成签到,获得积分20
31秒前
lmq完成签到 ,获得积分10
32秒前
35秒前
柴犬完成签到 ,获得积分10
36秒前
zh发布了新的文献求助10
42秒前
韭菜留下了新的社区评论
44秒前
bkagyin应助安戈采纳,获得10
44秒前
阳光的幻雪完成签到 ,获得积分10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511071
关于积分的说明 11156136
捐赠科研通 3245633
什么是DOI,文献DOI怎么找? 1793097
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268