Color prediction of mushroom slices during drying using Bayesian extreme learning machine

过度拟合 极限学习机 人工智能 机器学习 稳健性(进化) 计算机科学 人工神经网络 生物系统 数学 化学 基因 生物化学 生物
作者
Zi‐Liang Liu,Feng Nan,Xia Zheng,Magdalena Zielińska,Xu Duan,Lizhen Deng,Jun Wang,Wei Wu,Zhen‐Jiang Gao,Hong‐Wei Xiao
出处
期刊:Drying Technology [Informa]
卷期号:38 (14): 1869-1881 被引量:42
标识
DOI:10.1080/07373937.2019.1675077
摘要

Color is an important appearance attribute of fruits and vegetables during drying processing, as it influences consumer's preference and acceptability. Establishing color change kinetics model is an effective way for better understanding the quality changes and optimization of drying process. However, it is difficult to quickly and accurately predict color change kinetics during drying as it is highly nonlinear, complex, dynamic, and multivariable. To alleviate this problem, a new model based on extreme learning machine integrated Bayesian methods (BELM) has been developed for the prediction of color changes of mushroom slices during drying process. The effects of drying temperature (55, 60, 65, 70, and 75 °C) and air velocity (3, 6, 9, and 12 m/s) on color change kinetics of mushroom slices during hot air impingement drying were firstly explored and the experimental results indicated that both drying temperature and air velocity significantly affected the color attributes. Then, to validate the robustness and effectiveness of BELM, the basic extreme learning machine (ELM) and traditional back-propagation neural network (BPNN) models have also been employed to predict the color quality. In terms of prediction accuracy and execution time, BELM could achieve least similar or even better performance than ELM and BPNN. It overcame the overfitting problems of ELM. The test results of optimal BELM model by two new cases revealed that the lowest R2 and highest RMSE of BELM model were 0.9725 and 0.0563, respectively. The absolute values of relative errors between the actual and predicted values were lower than 8.5%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助Msong采纳,获得10
刚刚
19251758320完成签到 ,获得积分10
刚刚
开放夜南发布了新的文献求助10
刚刚
唐飒完成签到,获得积分10
1秒前
隐形曼青应助awoe采纳,获得10
1秒前
烂漫纲发布了新的文献求助10
1秒前
1秒前
1秒前
somous发布了新的文献求助10
1秒前
CipherSage应助王筠曦采纳,获得30
2秒前
2秒前
2秒前
Hello应助lkk采纳,获得10
2秒前
乂氼发布了新的文献求助10
3秒前
大模型应助Awei采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
yang发布了新的文献求助10
3秒前
Aurora发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
光亮又晴发布了新的文献求助10
4秒前
5秒前
迷路巧曼发布了新的文献求助20
5秒前
cc发布了新的文献求助30
5秒前
烂漫的雅容完成签到,获得积分10
6秒前
阿猫完成签到,获得积分10
6秒前
6秒前
烯灯发布了新的文献求助10
7秒前
传奇3应助唐文硕采纳,获得10
7秒前
zzy加油发布了新的文献求助10
7秒前
默默曼安发布了新的文献求助10
7秒前
LL完成签到 ,获得积分10
7秒前
云浪之外完成签到,获得积分10
7秒前
walu发布了新的文献求助50
7秒前
椰汁发布了新的文献求助10
8秒前
8秒前
8秒前
fhz完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836