阳极
X射线光电子能谱
电化学
硫系化合物
材料科学
碲化物
化学工程
硫族元素
循环伏安法
纳米晶
透射电子显微镜
电极
纳米技术
化学
冶金
结晶学
物理化学
工程类
作者
Gi Dae Park,Yun Chan Kang
标识
DOI:10.1002/smtd.202000556
摘要
Abstract Various metal chalcogenide materials have been investigated as novel candidate anode materials for K‐ion batteries (KIBs). This pioneering study explores the electrochemical reaction between K‐ions and iron telluride. A detailed analysis is performed using in situ and ex situ methods, including X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and cyclic voltammetry (CV), following the initial discharging and charging processes. The reversible reaction mechanism, from the second cycle of the reaction of FeTe 2 with K‐ions, is 2Fe + K 5 Te 3 + K 2 Te ↔ 2FeTe 1.1 + 1.8Te + 7K + + 7e ‐ . Hollow carbon nanospheres housing iron telluride nanocrystals (FeTe 2 ‐C) are synthesized via facile infiltration and a one‐step tellurization process to compensate for the substantial volume change of nanocrystals during the potassiation and depotassiation processes. Excellent electrochemical properties arise from the synergistic effect of the heterointerfaced FeTe 1.1 and metalloid Te formed after one cycle and the yolk‐shell architecture with uniformly distributed nanocrystals are embedded in a carbon shell. FeTe 2 ‐C electrode demonstrates remarkable long‐term cycle performance (171 mA h g ‐1 for the 500th cycle at a high current density of 0.5 A g ‐1 ) and an excellent rate capability (126 mA h g ‐1 ), even at a high current density of 10 A g ‐1 .
科研通智能强力驱动
Strongly Powered by AbleSci AI