Real-time, wide-field and high-quality single snapshot imaging of optical properties with profile correction using deep learning

图像质量 图像分辨率 视野 图像处理 医学影像学 领域(数学) 光学 卷积神经网络 光学成像 自适应光学 光场
作者
Enagnon Aguénounon,Jason T. Smith,Mahdi Al-Taher,Michele Diana,Xavier Intes,Sylvain Gioux
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:11 (10): 5701-5716 被引量:14
标识
DOI:10.1364/boe.397681
摘要

The development of real-time, wide-field and quantitative diffuse optical imaging methods to visualize functional and structural biomarkers of living tissues is a pressing need for numerous clinical applications including image-guided surgery. In this context, Spatial Frequency Domain Imaging (SFDI) is an attractive method allowing for the fast estimation of optical properties using the Single Snapshot of Optical Properties (SSOP) approach. Herein, we present a novel implementation of SSOP based on a combination of deep learning network at the filtering stage and Graphics Processing Units (GPU) capable of simultaneous high visual quality image reconstruction, surface profile correction and accurate optical property (OP) extraction in real-time across large fields of view. In the most optimal implementation, the presented methodology demonstrates megapixel profile-corrected OP imaging with results comparable to that of profile-corrected SFDI, with a processing time of 18 ms and errors relative to SFDI method less than 10% in both profilometry and profile-corrected OPs. This novel processing framework lays the foundation for real-time multispectral quantitative diffuse optical imaging for surgical guidance and healthcare applications. All code and data used for this work is publicly available at www.healthphotonics.org under the resources tab.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
雨姐科研应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Z1987完成签到,获得积分10
1秒前
宅多点应助科研通管家采纳,获得10
1秒前
雨姐科研应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
arizaki7应助科研通管家采纳,获得10
1秒前
大龙哥886应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
行者无疆发布了新的文献求助10
1秒前
HaonanZhang应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
宅多点应助科研通管家采纳,获得10
1秒前
雨姐科研应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
雨姐科研应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
arizaki7应助科研通管家采纳,获得10
2秒前
hangboy完成签到,获得积分10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
宅多点应助科研通管家采纳,获得10
2秒前
Tan应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866