亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Cross-Media Retrieval Using Domain Adaptation With Scene Graph

计算机科学 判别式 图形 人工智能 域适应 图像检索 情报检索 利用 场景图 领域(数学分析) 特征学习 模式识别(心理学) 图像(数学) 理论计算机科学 计算机安全 分类器(UML) 数学 数学分析 渲染(计算机图形)
作者
Yuxin Peng,Jingze Chi
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:30 (11): 4368-4379 被引量:32
标识
DOI:10.1109/tcsvt.2019.2953692
摘要

Existing cross-media retrieval methods are usually conducted under the supervised setting, which need lots of annotated training data. Generally, it is extremely labor-consuming to annotate cross-media data. So unsupervised cross-media retrieval is highly demanded, which is very challenging because it has to handle heterogeneous distributions across different media types without any annotated information. To address the above challenge, this paper proposes Domain Adaptation with Scene Graph (DASG) approach, which transfers knowledge from the source domain to improve cross-media retrieval in the target domain. Our DASG approach takes Visual Genome as the source domain, which contains image knowledge in the form of scene graph. The main contributions of this paper are as follows: First, we propose to address unsupervised cross-media retrieval by domain adaptation. Instead of using the labor-consuming annotated information of cross-media data in the training stage, our DASG approach learns cross-media correlation knowledge from Visual Genome, and then transfers the knowledge to cross-media retrieval through media alignment and distribution alignment. Second, our DASG approach utilizes fine-grained information via scene graph representation to enhance generalization capability across domains. The generated scene graph representation builds (subject$\rightarrow $ relationship$\rightarrow $ object) triplets by exploiting objects and relationships within image and text, which makes the cross-media correlation more precise and promotes unsupervised cross-media retrieval. Third, we exploit the related tasks including object and relationship detection for learning more discriminative features across domains. Leveraging the semantic information of objects and relationships improves cross-media correlation learning for retrieval. Experiments on two widely-used cross-media retrieval datasets, namely Flickr-30K and MS-COCO, show the effectiveness of our DASG approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SSY发布了新的文献求助10
4秒前
dwz完成签到,获得积分10
9秒前
12秒前
16秒前
Marciu33完成签到,获得积分10
16秒前
Theta完成签到,获得积分10
18秒前
dwz发布了新的文献求助10
19秒前
kcl发布了新的文献求助10
23秒前
fu完成签到,获得积分10
24秒前
31秒前
wmd完成签到,获得积分20
44秒前
东城区吴彦祖完成签到,获得积分10
47秒前
ys完成签到 ,获得积分10
47秒前
姬双完成签到,获得积分20
48秒前
许大脚完成签到 ,获得积分10
50秒前
正直的不平完成签到,获得积分10
52秒前
姬双发布了新的文献求助10
1分钟前
NiceSunnyDay完成签到 ,获得积分10
1分钟前
komorebi完成签到 ,获得积分10
1分钟前
jintian完成签到 ,获得积分10
1分钟前
所所应助SSY采纳,获得10
1分钟前
1分钟前
未来可期发布了新的文献求助30
1分钟前
2分钟前
寒冷念文完成签到,获得积分10
2分钟前
讨厌下雨天完成签到 ,获得积分10
2分钟前
完美世界应助跳跃采纳,获得10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
寒冷念文发布了新的文献求助10
2分钟前
就吃一小口完成签到 ,获得积分10
2分钟前
2分钟前
跳跃发布了新的文献求助10
2分钟前
2分钟前
2分钟前
万能图书馆应助是Tt呀采纳,获得10
2分钟前
2分钟前
3分钟前
dwz发布了新的文献求助10
3分钟前
慕青应助kcl采纳,获得10
3分钟前
韩麒嘉完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723624
求助须知:如何正确求助?哪些是违规求助? 5279622
关于积分的说明 15298934
捐赠科研通 4872008
什么是DOI,文献DOI怎么找? 2616456
邀请新用户注册赠送积分活动 1566278
关于科研通互助平台的介绍 1523161