亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Cross-Media Retrieval Using Domain Adaptation With Scene Graph

计算机科学 判别式 图形 人工智能 域适应 图像检索 情报检索 利用 场景图 领域(数学分析) 特征学习 模式识别(心理学) 图像(数学) 理论计算机科学 计算机安全 分类器(UML) 数学 数学分析 渲染(计算机图形)
作者
Yuxin Peng,Jingze Chi
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:30 (11): 4368-4379 被引量:32
标识
DOI:10.1109/tcsvt.2019.2953692
摘要

Existing cross-media retrieval methods are usually conducted under the supervised setting, which need lots of annotated training data. Generally, it is extremely labor-consuming to annotate cross-media data. So unsupervised cross-media retrieval is highly demanded, which is very challenging because it has to handle heterogeneous distributions across different media types without any annotated information. To address the above challenge, this paper proposes Domain Adaptation with Scene Graph (DASG) approach, which transfers knowledge from the source domain to improve cross-media retrieval in the target domain. Our DASG approach takes Visual Genome as the source domain, which contains image knowledge in the form of scene graph. The main contributions of this paper are as follows: First, we propose to address unsupervised cross-media retrieval by domain adaptation. Instead of using the labor-consuming annotated information of cross-media data in the training stage, our DASG approach learns cross-media correlation knowledge from Visual Genome, and then transfers the knowledge to cross-media retrieval through media alignment and distribution alignment. Second, our DASG approach utilizes fine-grained information via scene graph representation to enhance generalization capability across domains. The generated scene graph representation builds (subject$\rightarrow $ relationship$\rightarrow $ object) triplets by exploiting objects and relationships within image and text, which makes the cross-media correlation more precise and promotes unsupervised cross-media retrieval. Third, we exploit the related tasks including object and relationship detection for learning more discriminative features across domains. Leveraging the semantic information of objects and relationships improves cross-media correlation learning for retrieval. Experiments on two widely-used cross-media retrieval datasets, namely Flickr-30K and MS-COCO, show the effectiveness of our DASG approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yini应助体贴的小susu采纳,获得30
刚刚
SciGPT应助糊涂的万采纳,获得30
5秒前
5秒前
7秒前
深情安青应助不知道采纳,获得10
11秒前
修辛完成签到 ,获得积分10
11秒前
15秒前
糊涂的万发布了新的文献求助30
21秒前
27秒前
糊涂的万完成签到,获得积分10
27秒前
科研通AI6应助HaonanZhang采纳,获得30
34秒前
38秒前
41秒前
散装洋芋发布了新的文献求助10
45秒前
47秒前
脑洞疼应助散装洋芋采纳,获得10
51秒前
56秒前
57秒前
不知道发布了新的文献求助10
1分钟前
1分钟前
玩转科研徐小白完成签到,获得积分10
1分钟前
lxyonline完成签到 ,获得积分10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
lxyonline发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI6应助neko采纳,获得10
1分钟前
HaonanZhang发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Kivaria发布了新的文献求助10
2分钟前
Kivaria完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
搜集达人应助Kivaria采纳,获得10
2分钟前
怂宝儿发布了新的文献求助10
2分钟前
一壶古酒应助燕知春采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554741
求助须知:如何正确求助?哪些是违规求助? 4639346
关于积分的说明 14656084
捐赠科研通 4581264
什么是DOI,文献DOI怎么找? 2512668
邀请新用户注册赠送积分活动 1487424
关于科研通互助平台的介绍 1458325