Unsupervised Cross-Media Retrieval Using Domain Adaptation With Scene Graph

计算机科学 判别式 图形 人工智能 域适应 图像检索 情报检索 利用 场景图 领域(数学分析) 特征学习 模式识别(心理学) 图像(数学) 理论计算机科学 计算机安全 分类器(UML) 数学 数学分析 渲染(计算机图形)
作者
Yuxin Peng,Jingze Chi
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:30 (11): 4368-4379 被引量:32
标识
DOI:10.1109/tcsvt.2019.2953692
摘要

Existing cross-media retrieval methods are usually conducted under the supervised setting, which need lots of annotated training data. Generally, it is extremely labor-consuming to annotate cross-media data. So unsupervised cross-media retrieval is highly demanded, which is very challenging because it has to handle heterogeneous distributions across different media types without any annotated information. To address the above challenge, this paper proposes Domain Adaptation with Scene Graph (DASG) approach, which transfers knowledge from the source domain to improve cross-media retrieval in the target domain. Our DASG approach takes Visual Genome as the source domain, which contains image knowledge in the form of scene graph. The main contributions of this paper are as follows: First, we propose to address unsupervised cross-media retrieval by domain adaptation. Instead of using the labor-consuming annotated information of cross-media data in the training stage, our DASG approach learns cross-media correlation knowledge from Visual Genome, and then transfers the knowledge to cross-media retrieval through media alignment and distribution alignment. Second, our DASG approach utilizes fine-grained information via scene graph representation to enhance generalization capability across domains. The generated scene graph representation builds (subject$\rightarrow $ relationship$\rightarrow $ object) triplets by exploiting objects and relationships within image and text, which makes the cross-media correlation more precise and promotes unsupervised cross-media retrieval. Third, we exploit the related tasks including object and relationship detection for learning more discriminative features across domains. Leveraging the semantic information of objects and relationships improves cross-media correlation learning for retrieval. Experiments on two widely-used cross-media retrieval datasets, namely Flickr-30K and MS-COCO, show the effectiveness of our DASG approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
butu发布了新的文献求助10
刚刚
1秒前
陈曦完成签到,获得积分10
1秒前
ZY发布了新的文献求助10
2秒前
2秒前
ccc完成签到 ,获得积分10
2秒前
濮阳乐双完成签到,获得积分10
3秒前
3秒前
ding应助YBOH采纳,获得10
3秒前
简单灵完成签到,获得积分10
4秒前
李李发布了新的文献求助10
4秒前
科研通AI2S应助hhh采纳,获得10
4秒前
小马甲应助qiong采纳,获得10
4秒前
5秒前
ALpha完成签到,获得积分10
7秒前
kjding发布了新的文献求助10
8秒前
xiangxiang发布了新的文献求助10
8秒前
8秒前
忐忑的元正完成签到,获得积分20
8秒前
甜甜乌完成签到,获得积分10
8秒前
interesting应助靓丽的安筠采纳,获得10
9秒前
9秒前
yeye发布了新的文献求助10
10秒前
12秒前
12秒前
李李完成签到,获得积分10
13秒前
13秒前
seeyou发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
16秒前
麦益颖发布了新的文献求助10
16秒前
butu完成签到,获得积分10
16秒前
YBOH发布了新的文献求助10
16秒前
专一的台灯完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
Hello应助hallie采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312954
求助须知:如何正确求助?哪些是违规求助? 2945353
关于积分的说明 8524838
捐赠科研通 2621121
什么是DOI,文献DOI怎么找? 1433353
科研通“疑难数据库(出版商)”最低求助积分说明 664936
邀请新用户注册赠送积分活动 650388