CANet: Cross-disease Attention Network for Joint Diabetic Retinopathy and Diabetic Macular Edema Grading

分级(工程) 糖尿病性视网膜病变 计算机科学 医学 疾病 验光服务 眼科 人工智能 糖尿病 病理 工程类 内分泌学 土木工程
作者
Yongming Li,Xiaowei Hu,Lequan Yu,Lei Zhu,Chi‐Wing Fu,Pheng‐Ann Heng
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.1911.01376
摘要

Diabetic retinopathy (DR) and diabetic macular edema (DME) are the leading causes of permanent blindness in the working-age population. Automatic grading of DR and DME helps ophthalmologists design tailored treatments to patients, thus is of vital importance in the clinical practice. However, prior works either grade DR or DME, and ignore the correlation between DR and its complication, i.e., DME. Moreover, the location information, e.g., macula and soft hard exhaust annotations, are widely used as a prior for grading. Such annotations are costly to obtain, hence it is desirable to develop automatic grading methods with only image-level supervision. In this paper, we present a novel cross-disease attention network (CANet) to jointly grade DR and DME by exploring the internal relationship between the diseases with only image-level supervision. Our key contributions include the disease-specific attention module to selectively learn useful features for individual diseases, and the disease-dependent attention module to further capture the internal relationship between the two diseases. We integrate these two attention modules in a deep network to produce disease-specific and disease-dependent features, and to maximize the overall performance jointly for grading DR and DME. We evaluate our network on two public benchmark datasets, i.e., ISBI 2018 IDRiD challenge dataset and Messidor dataset. Our method achieves the best result on the ISBI 2018 IDRiD challenge dataset and outperforms other methods on the Messidor dataset. Our code is publicly available at https://github.com/xmengli999/CANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
公园人发布了新的文献求助50
3秒前
俊秀的问旋完成签到,获得积分10
5秒前
小猪发布了新的文献求助10
6秒前
wangmp66发布了新的文献求助50
6秒前
不配.应助赵文龙采纳,获得10
10秒前
科目三应助洁净的士晋采纳,获得10
10秒前
大个应助songvv采纳,获得10
10秒前
不配.应助FOREST采纳,获得10
10秒前
13秒前
大帅哥完成签到,获得积分10
13秒前
小熊熊完成签到,获得积分10
14秒前
求求啦发布了新的文献求助10
14秒前
减肥为窈窕完成签到,获得积分10
15秒前
15秒前
CipherSage应助星河在眼里采纳,获得10
16秒前
wangmp66完成签到,获得积分10
16秒前
19秒前
20秒前
天天快乐应助小猪采纳,获得10
21秒前
22秒前
花花完成签到 ,获得积分20
22秒前
丁浩完成签到,获得积分10
23秒前
songvv发布了新的文献求助10
25秒前
aaaaarfv发布了新的文献求助10
26秒前
27秒前
jmsd完成签到 ,获得积分10
32秒前
小蘑菇应助Nowind采纳,获得30
33秒前
充电宝应助and采纳,获得10
34秒前
40秒前
songvv完成签到,获得积分20
42秒前
我是老大应助科研通管家采纳,获得10
47秒前
Orange应助科研通管家采纳,获得10
47秒前
47秒前
xiaoming应助科研通管家采纳,获得10
47秒前
酷波er应助科研通管家采纳,获得30
47秒前
乐乐应助科研通管家采纳,获得10
47秒前
47秒前
47秒前
NexusExplorer应助花花采纳,获得10
48秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138572
求助须知:如何正确求助?哪些是违规求助? 2789520
关于积分的说明 7791526
捐赠科研通 2445903
什么是DOI,文献DOI怎么找? 1300715
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079