A clean energy forecasting model based on artificial intelligence and fractional derivative grey Bernoulli models

人工神经网络 伯努利原理 能源消耗 支持向量机 能量(信号处理) 人工智能 计算机科学 非线性系统 工程类 数学 统计 物理 电气工程 量子力学 航空航天工程
作者
Yonghong Zhang,Shuhua Mao,Yuxiao Kang
出处
期刊:Grey systems [Emerald (MCB UP)]
卷期号:11 (4): 571-595 被引量:14
标识
DOI:10.1108/gs-08-2020-0101
摘要

Purpose With the massive use of fossil energy polluting the natural environment, clean energy has gradually become the focus of future energy development. The purpose of this article is to propose a new hybrid forecasting model to forecast the production and consumption of clean energy. Design/methodology/approach Firstly, the memory characteristics of the production and consumption of clean energy were analyzed by the rescaled range analysis (R/S) method. Secondly, the original series was decomposed into several components and residuals with different characteristics by the ensemble empirical mode decomposition (EEMD) algorithm, and the residuals were predicted by the fractional derivative grey Bernoulli model [FDGBM ( p , 1)]. The other components were predicted using artificial intelligence (AI) models (least square support vector regression [LSSVR] and artificial neural network [ANN]). Finally, the fitting values of each part were added to get the predicted value of the original series. Findings This study found that clean energy had memory characteristics. The hybrid models EEMD–FDGBM ( p , 1)–LSSVR and EEMD–FDGBM ( p , 1)–ANN were significantly higher than other models in the prediction of clean energy production and consumption. Originality/value Consider that clean energy has complex nonlinear and memory characteristics. In this paper, the EEMD method combined the FDGBM ( P , 1) and AI models to establish hybrid models to predict the consumption and output of clean energy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
文人青完成签到,获得积分10
3秒前
Sunny完成签到 ,获得积分10
3秒前
chanyelo完成签到,获得积分10
4秒前
lucas发布了新的文献求助10
5秒前
迷路的翠容完成签到,获得积分10
5秒前
Duomo应助谨慎的易蓉采纳,获得10
5秒前
远航完成签到,获得积分10
7秒前
文献高手完成签到 ,获得积分10
7秒前
Maestro_S应助科研通管家采纳,获得10
9秒前
gengen应助科研通管家采纳,获得10
9秒前
BareBear应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
BareBear应助科研通管家采纳,获得10
9秒前
Maestro_S应助科研通管家采纳,获得10
9秒前
gengen应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
Maestro_S应助科研通管家采纳,获得10
10秒前
BareBear应助科研通管家采纳,获得10
10秒前
gengen应助科研通管家采纳,获得10
10秒前
BareBear应助科研通管家采纳,获得10
10秒前
smottom应助科研通管家采纳,获得10
10秒前
Maestro_S应助科研通管家采纳,获得10
10秒前
BareBear应助科研通管家采纳,获得10
10秒前
10秒前
BareBear应助科研通管家采纳,获得10
10秒前
小杭76应助科研通管家采纳,获得10
10秒前
Maestro_S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
BareBear应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
小杭76应助科研通管家采纳,获得10
11秒前
11秒前
二碘化钾完成签到 ,获得积分10
11秒前
15秒前
Gabriel发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603500
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854100
捐赠科研通 4693213
什么是DOI,文献DOI怎么找? 2540784
邀请新用户注册赠送积分活动 1507041
关于科研通互助平台的介绍 1471806