A clean energy forecasting model based on artificial intelligence and fractional derivative grey Bernoulli models

人工神经网络 伯努利原理 能源消耗 支持向量机 能量(信号处理) 人工智能 计算机科学 非线性系统 工程类 数学 统计 物理 电气工程 量子力学 航空航天工程
作者
Yonghong Zhang,Shuhua Mao,Yuxiao Kang
出处
期刊:Grey systems [Emerald (MCB UP)]
卷期号:11 (4): 571-595 被引量:14
标识
DOI:10.1108/gs-08-2020-0101
摘要

Purpose With the massive use of fossil energy polluting the natural environment, clean energy has gradually become the focus of future energy development. The purpose of this article is to propose a new hybrid forecasting model to forecast the production and consumption of clean energy. Design/methodology/approach Firstly, the memory characteristics of the production and consumption of clean energy were analyzed by the rescaled range analysis (R/S) method. Secondly, the original series was decomposed into several components and residuals with different characteristics by the ensemble empirical mode decomposition (EEMD) algorithm, and the residuals were predicted by the fractional derivative grey Bernoulli model [FDGBM ( p , 1)]. The other components were predicted using artificial intelligence (AI) models (least square support vector regression [LSSVR] and artificial neural network [ANN]). Finally, the fitting values of each part were added to get the predicted value of the original series. Findings This study found that clean energy had memory characteristics. The hybrid models EEMD–FDGBM ( p , 1)–LSSVR and EEMD–FDGBM ( p , 1)–ANN were significantly higher than other models in the prediction of clean energy production and consumption. Originality/value Consider that clean energy has complex nonlinear and memory characteristics. In this paper, the EEMD method combined the FDGBM ( P , 1) and AI models to establish hybrid models to predict the consumption and output of clean energy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lande发布了新的文献求助10
刚刚
古工楼发布了新的文献求助10
2秒前
在水一方应助wen采纳,获得10
5秒前
赘婿应助Mandyan采纳,获得10
5秒前
QLLW发布了新的文献求助10
5秒前
不能当饭吃完成签到,获得积分10
5秒前
英俊的铭应助木杉采纳,获得10
5秒前
马户的崛起完成签到,获得积分10
6秒前
星辰大海应助坦率德地采纳,获得10
7秒前
鱼鱼子完成签到,获得积分20
13秒前
14秒前
哈哈哈哈完成签到,获得积分20
14秒前
gq100520发布了新的文献求助10
14秒前
山长子完成签到,获得积分10
16秒前
16秒前
17秒前
乐观的颦发布了新的文献求助10
19秒前
ivy发布了新的文献求助10
19秒前
19秒前
王焕玉完成签到,获得积分10
20秒前
丘比特应助不安的冷荷采纳,获得10
21秒前
ty完成签到,获得积分10
22秒前
坦率德地发布了新的文献求助10
22秒前
我真的还想再活五百年完成签到,获得积分10
24秒前
牛马完成签到 ,获得积分10
24秒前
纯真万言发布了新的文献求助10
24秒前
26秒前
JamesYang发布了新的文献求助10
26秒前
今后应助yyanxuemin919采纳,获得10
27秒前
daisyyy完成签到,获得积分10
27秒前
打打应助哈哈哈哈采纳,获得10
30秒前
科研通AI6应助ivy采纳,获得10
32秒前
32秒前
34秒前
情怀应助Mok采纳,获得10
36秒前
37秒前
38秒前
xun完成签到,获得积分10
39秒前
我是科研狗完成签到,获得积分10
40秒前
1280065188完成签到,获得积分20
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841