A clean energy forecasting model based on artificial intelligence and fractional derivative grey Bernoulli models

人工神经网络 伯努利原理 能源消耗 支持向量机 能量(信号处理) 人工智能 计算机科学 非线性系统 工程类 数学 统计 物理 电气工程 量子力学 航空航天工程
作者
Yonghong Zhang,Shuhua Mao,Yuxiao Kang
出处
期刊:Grey systems [Emerald (MCB UP)]
卷期号:11 (4): 571-595 被引量:14
标识
DOI:10.1108/gs-08-2020-0101
摘要

Purpose With the massive use of fossil energy polluting the natural environment, clean energy has gradually become the focus of future energy development. The purpose of this article is to propose a new hybrid forecasting model to forecast the production and consumption of clean energy. Design/methodology/approach Firstly, the memory characteristics of the production and consumption of clean energy were analyzed by the rescaled range analysis (R/S) method. Secondly, the original series was decomposed into several components and residuals with different characteristics by the ensemble empirical mode decomposition (EEMD) algorithm, and the residuals were predicted by the fractional derivative grey Bernoulli model [FDGBM ( p , 1)]. The other components were predicted using artificial intelligence (AI) models (least square support vector regression [LSSVR] and artificial neural network [ANN]). Finally, the fitting values of each part were added to get the predicted value of the original series. Findings This study found that clean energy had memory characteristics. The hybrid models EEMD–FDGBM ( p , 1)–LSSVR and EEMD–FDGBM ( p , 1)–ANN were significantly higher than other models in the prediction of clean energy production and consumption. Originality/value Consider that clean energy has complex nonlinear and memory characteristics. In this paper, the EEMD method combined the FDGBM ( P , 1) and AI models to establish hybrid models to predict the consumption and output of clean energy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmol发布了新的文献求助10
1秒前
2秒前
Lm发布了新的文献求助10
2秒前
2秒前
斯文败类应助时渐惜采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
77完成签到,获得积分10
4秒前
Meidina完成签到,获得积分10
5秒前
ghytrfd发布了新的文献求助20
5秒前
无极微光应助柒夏采纳,获得20
5秒前
6秒前
困鱼芝士发布了新的文献求助10
7秒前
7秒前
未来可期给未来可期的求助进行了留言
8秒前
8秒前
8秒前
干净寻冬应助大脸猫采纳,获得10
8秒前
苏苏发布了新的文献求助10
9秒前
可爱的函函应助bb采纳,获得10
9秒前
cheng完成签到,获得积分10
10秒前
留胡子的迎梦完成签到 ,获得积分10
11秒前
丽丽完成签到,获得积分20
12秒前
Orange应助教生物的杨教授采纳,获得10
12秒前
FashionBoy应助赵念婉采纳,获得10
12秒前
dsk发布了新的文献求助10
12秒前
13秒前
帅b发布了新的文献求助10
14秒前
ghytrfd完成签到,获得积分10
15秒前
苏苏完成签到,获得积分10
15秒前
陶醉猎豹发布了新的文献求助10
15秒前
wy.he应助kawai采纳,获得10
15秒前
wy.he应助kawai采纳,获得10
16秒前
16秒前
侃侃完成签到,获得积分10
16秒前
梨炒栗子完成签到,获得积分10
17秒前
独特大白菜真实的钥匙完成签到,获得积分10
17秒前
哈呵嚯嘿呀完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573