A clean energy forecasting model based on artificial intelligence and fractional derivative grey Bernoulli models

人工神经网络 伯努利原理 能源消耗 支持向量机 能量(信号处理) 人工智能 计算机科学 非线性系统 工程类 数学 统计 物理 电气工程 量子力学 航空航天工程
作者
Yonghong Zhang,Shuhua Mao,Yuxiao Kang
出处
期刊:Grey systems [Emerald (MCB UP)]
卷期号:11 (4): 571-595 被引量:14
标识
DOI:10.1108/gs-08-2020-0101
摘要

Purpose With the massive use of fossil energy polluting the natural environment, clean energy has gradually become the focus of future energy development. The purpose of this article is to propose a new hybrid forecasting model to forecast the production and consumption of clean energy. Design/methodology/approach Firstly, the memory characteristics of the production and consumption of clean energy were analyzed by the rescaled range analysis (R/S) method. Secondly, the original series was decomposed into several components and residuals with different characteristics by the ensemble empirical mode decomposition (EEMD) algorithm, and the residuals were predicted by the fractional derivative grey Bernoulli model [FDGBM ( p , 1)]. The other components were predicted using artificial intelligence (AI) models (least square support vector regression [LSSVR] and artificial neural network [ANN]). Finally, the fitting values of each part were added to get the predicted value of the original series. Findings This study found that clean energy had memory characteristics. The hybrid models EEMD–FDGBM ( p , 1)–LSSVR and EEMD–FDGBM ( p , 1)–ANN were significantly higher than other models in the prediction of clean energy production and consumption. Originality/value Consider that clean energy has complex nonlinear and memory characteristics. In this paper, the EEMD method combined the FDGBM ( P , 1) and AI models to establish hybrid models to predict the consumption and output of clean energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忘多发布了新的文献求助10
1秒前
青山完成签到 ,获得积分10
2秒前
KUZMA完成签到,获得积分10
3秒前
一颗小洋葱完成签到 ,获得积分10
4秒前
4秒前
沟通亿心完成签到,获得积分10
4秒前
4秒前
yy完成签到 ,获得积分10
5秒前
trial完成签到,获得积分10
5秒前
领导范儿应助123采纳,获得10
5秒前
朵朵完成签到,获得积分10
5秒前
不安青牛应助hfh采纳,获得10
5秒前
雨水完成签到,获得积分10
6秒前
YANG完成签到 ,获得积分10
6秒前
上官若男应助PhD采纳,获得10
6秒前
鲸鱼完成签到,获得积分10
7秒前
8秒前
淡然靖柔完成签到,获得积分10
9秒前
坚定的羽毛完成签到,获得积分10
9秒前
自信疾完成签到,获得积分10
9秒前
朴素海亦发布了新的文献求助10
9秒前
菜鸟果果完成签到,获得积分10
9秒前
勤恳锅包肉完成签到 ,获得积分10
10秒前
爆米花应助ktssly采纳,获得10
10秒前
怡然念之完成签到 ,获得积分10
10秒前
结实的洋葱完成签到,获得积分10
12秒前
安静问梅完成签到,获得积分10
12秒前
猫南北完成签到,获得积分10
13秒前
charm完成签到,获得积分10
14秒前
乐观健柏完成签到,获得积分10
14秒前
15秒前
callmefather完成签到,获得积分10
16秒前
16秒前
pearlsun完成签到,获得积分10
17秒前
明眸完成签到,获得积分10
17秒前
怡然猎豹完成签到,获得积分0
18秒前
19秒前
圈圈完成签到,获得积分10
19秒前
sunmeng发布了新的文献求助10
19秒前
端庄的小蝴蝶完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080494
捐赠科研通 4434084
什么是DOI,文献DOI怎么找? 2434382
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349