A clean energy forecasting model based on artificial intelligence and fractional derivative grey Bernoulli models

人工神经网络 伯努利原理 能源消耗 支持向量机 能量(信号处理) 人工智能 计算机科学 非线性系统 工程类 数学 统计 物理 电气工程 量子力学 航空航天工程
作者
Yonghong Zhang,Shuhua Mao,Yuxiao Kang
出处
期刊:Grey systems [Emerald (MCB UP)]
卷期号:11 (4): 571-595 被引量:14
标识
DOI:10.1108/gs-08-2020-0101
摘要

Purpose With the massive use of fossil energy polluting the natural environment, clean energy has gradually become the focus of future energy development. The purpose of this article is to propose a new hybrid forecasting model to forecast the production and consumption of clean energy. Design/methodology/approach Firstly, the memory characteristics of the production and consumption of clean energy were analyzed by the rescaled range analysis (R/S) method. Secondly, the original series was decomposed into several components and residuals with different characteristics by the ensemble empirical mode decomposition (EEMD) algorithm, and the residuals were predicted by the fractional derivative grey Bernoulli model [FDGBM ( p , 1)]. The other components were predicted using artificial intelligence (AI) models (least square support vector regression [LSSVR] and artificial neural network [ANN]). Finally, the fitting values of each part were added to get the predicted value of the original series. Findings This study found that clean energy had memory characteristics. The hybrid models EEMD–FDGBM ( p , 1)–LSSVR and EEMD–FDGBM ( p , 1)–ANN were significantly higher than other models in the prediction of clean energy production and consumption. Originality/value Consider that clean energy has complex nonlinear and memory characteristics. In this paper, the EEMD method combined the FDGBM ( P , 1) and AI models to establish hybrid models to predict the consumption and output of clean energy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彧辰完成签到 ,获得积分10
2秒前
Maxine完成签到 ,获得积分10
2秒前
小雪发布了新的文献求助50
3秒前
沐月完成签到,获得积分10
6秒前
小孩完成签到 ,获得积分10
6秒前
6秒前
勤恳雅莉应助虚幻靖易采纳,获得200
6秒前
刘钦完成签到,获得积分10
7秒前
Lucas应助科研通管家采纳,获得10
9秒前
汉堡包应助13934532358采纳,获得10
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
完美世界应助妖妖灵采纳,获得50
9秒前
if应助科研通管家采纳,获得30
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
10秒前
Hello应助科研通管家采纳,获得10
10秒前
10秒前
Nicole发布了新的文献求助10
10秒前
ding应助橙橙妈妈采纳,获得20
10秒前
勿忘完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
天真彩虹完成签到 ,获得积分0
12秒前
鳗鱼煜祺完成签到,获得积分10
12秒前
13秒前
瑞拉发布了新的文献求助10
13秒前
XX完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578482
求助须知:如何正确求助?哪些是违规求助? 4663316
关于积分的说明 14745953
捐赠科研通 4604100
什么是DOI,文献DOI怎么找? 2526837
邀请新用户注册赠送积分活动 1496440
关于科研通互助平台的介绍 1465718