亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A clean energy forecasting model based on artificial intelligence and fractional derivative grey Bernoulli models

人工神经网络 伯努利原理 能源消耗 支持向量机 能量(信号处理) 人工智能 计算机科学 非线性系统 工程类 数学 统计 物理 电气工程 量子力学 航空航天工程
作者
Yonghong Zhang,Shuhua Mao,Yuxiao Kang
出处
期刊:Grey systems [Emerald (MCB UP)]
卷期号:11 (4): 571-595 被引量:14
标识
DOI:10.1108/gs-08-2020-0101
摘要

Purpose With the massive use of fossil energy polluting the natural environment, clean energy has gradually become the focus of future energy development. The purpose of this article is to propose a new hybrid forecasting model to forecast the production and consumption of clean energy. Design/methodology/approach Firstly, the memory characteristics of the production and consumption of clean energy were analyzed by the rescaled range analysis (R/S) method. Secondly, the original series was decomposed into several components and residuals with different characteristics by the ensemble empirical mode decomposition (EEMD) algorithm, and the residuals were predicted by the fractional derivative grey Bernoulli model [FDGBM ( p , 1)]. The other components were predicted using artificial intelligence (AI) models (least square support vector regression [LSSVR] and artificial neural network [ANN]). Finally, the fitting values of each part were added to get the predicted value of the original series. Findings This study found that clean energy had memory characteristics. The hybrid models EEMD–FDGBM ( p , 1)–LSSVR and EEMD–FDGBM ( p , 1)–ANN were significantly higher than other models in the prediction of clean energy production and consumption. Originality/value Consider that clean energy has complex nonlinear and memory characteristics. In this paper, the EEMD method combined the FDGBM ( P , 1) and AI models to establish hybrid models to predict the consumption and output of clean energy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
睽阔完成签到 ,获得积分10
5秒前
fanhuaxuejin发布了新的文献求助10
7秒前
抱小熊睡觉完成签到,获得积分10
8秒前
10秒前
菲比发布了新的文献求助10
10秒前
情怀应助人类不宜搞科研采纳,获得10
11秒前
12秒前
果果发布了新的文献求助10
15秒前
Haoru应助Captain采纳,获得30
15秒前
酷波er应助遇晚采纳,获得10
18秒前
夜夏完成签到,获得积分10
26秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
31秒前
绝望的大学生完成签到,获得积分20
31秒前
33秒前
boom完成签到 ,获得积分10
35秒前
36秒前
wwww完成签到 ,获得积分0
36秒前
36秒前
cwj完成签到,获得积分10
37秒前
Vince发布了新的文献求助10
40秒前
wangran_778发布了新的文献求助10
42秒前
48秒前
doctor_quyi发布了新的文献求助10
51秒前
wangran_778完成签到,获得积分10
53秒前
55秒前
56秒前
李义志完成签到,获得积分10
59秒前
59秒前
佳佳发布了新的文献求助10
59秒前
啊哦发布了新的文献求助30
1分钟前
今后应助李义志采纳,获得10
1分钟前
科研通AI6应助黄黄黄采纳,获得10
1分钟前
无极微光应助缓慢的藏鸟采纳,获得20
1分钟前
贱小贱完成签到,获得积分10
1分钟前
ZYP发布了新的文献求助10
1分钟前
科研狗完成签到 ,获得积分10
1分钟前
无花果应助好了没了采纳,获得10
1分钟前
科研通AI6应助啊哦采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264