量子点
电致发光
光电子学
量子产额
材料科学
发光二极管
钝化
光致发光
量子效率
光学
纳米技术
荧光
物理
图层(电子)
作者
Taehyung Kim,Kwanghee Kim,Tae Whan Kim,Seon-Myeong Choi,Hyosook Jang,H.S. Seo,Heejae Lee,Dong Hoon Chung,Eunjoo Jang
出处
期刊:Nature
[Springer Nature]
日期:2020-10-14
卷期号:586 (7829): 385-389
被引量:480
标识
DOI:10.1038/s41586-020-2791-x
摘要
The visualization of accurate colour information using quantum dots has been explored for decades, and commercial products employing environmentally friendly materials are currently available as backlights1. However, next-generation electroluminescent displays based on quantum dots require the development of an efficient and stable cadmium-free blue-light-emitting device, which has remained a challenge because of the inferior photophysical properties of blue-light-emitting materials2,3. Here we present the synthesis of ZnSe-based blue-light-emitting quantum dots with a quantum yield of unity. We found that hydrofluoric acid and zinc chloride additives are effective at enhancing luminescence efficiency by eliminating stacking faults in the ZnSe crystalline structure. In addition, chloride passivation through liquid or solid ligand exchange leads to slow radiative recombination, high thermal stability and efficient charge-transport properties. We constructed double quantum dot emitting layers with gradient chloride content in a light-emitting diode to facilitate hole transport, and the resulting device showed an efficiency at the theoretical limit, high brightness and long operational lifetime. We anticipate that our efficient and stable blue quantum dot light-emitting devices can facilitate the development of electroluminescent full-colour displays using quantum dots. Cadmium-free blue quantum dot light-emitting diodes are constructed with a quantum yield of unity, an efficiency at the theoretical limit, high brightness and long operational lifetime.
科研通智能强力驱动
Strongly Powered by AbleSci AI