Underwater Acoustic Target Classification Based on Dense Convolutional Neural Network

计算机科学 卷积神经网络 光谱图 人工智能 声纳 特征(语言学) 深度学习 人工神经网络 语音识别 模式识别(心理学) 水下 声纳信号处理 数据集 特征提取 信号处理 雷达 电信 哲学 海洋学 语言学 地质学
作者
Van‐Sang Doan,Thien Huynh‐The,Dong‐Seong Kim
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:110
标识
DOI:10.1109/lgrs.2020.3029584
摘要

In oceanic remote sensing operations, underwater acoustic target recognition is always a difficult and extremely important task of sonar systems, especially in the condition of complex sound wave propagation characteristics. The expensively learning recognition model for big data analysis is typically an obstacle for most traditional machine learning (ML) algorithms, whereas the convolutional neural network (CNN), a type of deep neural network, can automatically extract features for accurate classification. In this study, we propose an approach using a dense CNN model for underwater target recognition. The network architecture is designed to cleverly reuse all former feature maps to optimize classification rates under various impaired conditions while satisfying low computational cost. In addition, instead of using time–frequency spectrogram images, the proposed scheme allows directly utilizing the original audio signal in the time domain as the network input data. Based on the experimental results evaluated on the real-world data set of passive sonar, our classification model achieves the overall accuracy of 98.85% at 0-dB signal-to-noise ratio (SNR) and outperforms traditional ML techniques, as well as other state-of-the-art CNN models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助LHP采纳,获得10
刚刚
喵了个咪完成签到 ,获得积分10
1秒前
赵若辰发布了新的文献求助10
1秒前
hanpeng完成签到,获得积分20
2秒前
2秒前
2秒前
ding应助23XZYZN采纳,获得10
3秒前
碧蓝安露发布了新的文献求助10
3秒前
忘忧草完成签到,获得积分20
3秒前
科研通AI6应助小雨快跑采纳,获得10
3秒前
sofia发布了新的文献求助10
4秒前
4秒前
5秒前
思源应助爱橙色的阿七采纳,获得10
5秒前
完美世界应助JianDan采纳,获得10
5秒前
鹿门鹿门山完成签到,获得积分10
5秒前
6秒前
perry完成签到,获得积分10
6秒前
太阳花完成签到,获得积分20
7秒前
7秒前
8秒前
忘忧草发布了新的文献求助10
8秒前
9秒前
科研通AI6应助倪维采纳,获得10
9秒前
10秒前
10秒前
Tansy2023发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
Lucian完成签到,获得积分10
13秒前
14秒前
14秒前
Owen应助yhb采纳,获得10
14秒前
14秒前
14秒前
高大怡发布了新的文献求助10
15秒前
16秒前
xinglin发布了新的文献求助10
16秒前
yiban完成签到,获得积分10
16秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300