Deep Convolutional Neural Network with Dilated Convolution Using Small Size Dataset

过度拟合 卷积神经网络 计算机科学 人工智能 深度学习 联营 规范化(社会学) 模式识别(心理学) 卷积(计算机科学) 人工神经网络 机器学习 社会学 人类学
作者
Shengwei Zhou,Caikou Chen,Guojiang Han,Xielian Hou
标识
DOI:10.23919/chicc.2019.8865226
摘要

Since Alex Krizhevsky won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 competition by building a very intelligent deep convolutional neural network (D-CNNs), more and more researchers have been engaged in the research and development of deep convolutional neural network (D-CNNs). However, recent researches on deep convolutional neural networks are mostly based on ImageNet datasets. The network model based on such a large dataset is mostly blind to increase the number of network layers, ignoring that most data sets in application are far from the order of magnitude of ImageNet datasets. Such deep networks tend to perform poorly in small datasets (CIFAR-10), since deep models are easy to overfitting. In this paper, we've applied some of the more efficient methods that have been proposed in recent years to traditional deep convolutional neural networks. We proposed a modified Alex network and used this model to fit CIFAR-10. By adding Batch Normalization, using Dilated Convolution and replacing Fully Connected layer (FC) with Global Average Pooling (GAP), we achieved 8.6% error rate on CIFAR-10 without severe overfitting. Our results show that the deep CNN can be used to fit small datasets with proper modifications and the results are much better than before.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助LLL采纳,获得10
刚刚
希望天下0贩的0应助源缘采纳,获得10
刚刚
跑快点发布了新的文献求助10
刚刚
wenchong发布了新的文献求助10
刚刚
大梦想家完成签到,获得积分10
1秒前
1秒前
1秒前
haha完成签到,获得积分10
1秒前
许译匀完成签到,获得积分10
2秒前
FashionBoy应助阿肖呀采纳,获得10
3秒前
道心发布了新的文献求助10
4秒前
万松辉发布了新的文献求助10
4秒前
周雪完成签到 ,获得积分10
5秒前
小云杉发布了新的文献求助10
5秒前
6秒前
卫凡霜发布了新的文献求助10
6秒前
许译匀发布了新的文献求助10
7秒前
123给123的求助进行了留言
7秒前
张张发布了新的文献求助10
7秒前
CodeCraft应助xue采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
神勇乐曲完成签到,获得积分10
8秒前
Mry发布了新的文献求助10
8秒前
南浔完成签到,获得积分10
9秒前
9秒前
啥都懂发布了新的文献求助10
10秒前
11秒前
pazhao发布了新的文献求助10
13秒前
大模型应助许译匀采纳,获得10
13秒前
Akim应助覃攀攀采纳,获得10
13秒前
多年以后完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
15秒前
16秒前
情怀应助tql9211采纳,获得10
17秒前
Zooey旎旎完成签到,获得积分10
17秒前
17秒前
Dream发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698841
关于积分的说明 14899179
捐赠科研通 4737144
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511132
关于科研通互助平台的介绍 1473605