Deep Convolutional Neural Network with Dilated Convolution Using Small Size Dataset

过度拟合 卷积神经网络 计算机科学 人工智能 深度学习 联营 规范化(社会学) 模式识别(心理学) 卷积(计算机科学) 人工神经网络 机器学习 人类学 社会学
作者
Shengwei Zhou,Caikou Chen,Guojiang Han,Xielian Hou
标识
DOI:10.23919/chicc.2019.8865226
摘要

Since Alex Krizhevsky won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 competition by building a very intelligent deep convolutional neural network (D-CNNs), more and more researchers have been engaged in the research and development of deep convolutional neural network (D-CNNs). However, recent researches on deep convolutional neural networks are mostly based on ImageNet datasets. The network model based on such a large dataset is mostly blind to increase the number of network layers, ignoring that most data sets in application are far from the order of magnitude of ImageNet datasets. Such deep networks tend to perform poorly in small datasets (CIFAR-10), since deep models are easy to overfitting. In this paper, we've applied some of the more efficient methods that have been proposed in recent years to traditional deep convolutional neural networks. We proposed a modified Alex network and used this model to fit CIFAR-10. By adding Batch Normalization, using Dilated Convolution and replacing Fully Connected layer (FC) with Global Average Pooling (GAP), we achieved 8.6% error rate on CIFAR-10 without severe overfitting. Our results show that the deep CNN can be used to fit small datasets with proper modifications and the results are much better than before.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鄙视注册完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
落寞溪灵完成签到 ,获得积分10
5秒前
玖玖柒idol完成签到,获得积分10
5秒前
曌虞完成签到,获得积分10
5秒前
6秒前
啥,这都是啥完成签到,获得积分10
6秒前
皮皮桂发布了新的文献求助10
7秒前
8秒前
大大发布了新的文献求助10
8秒前
9秒前
orixero应助wang1090采纳,获得30
11秒前
11秒前
l11x29发布了新的文献求助10
13秒前
lin完成签到,获得积分10
13秒前
大侠发布了新的文献求助10
14秒前
14秒前
是锦锦呀完成签到,获得积分10
14秒前
14秒前
李秋静发布了新的文献求助10
15秒前
zhen发布了新的文献求助50
17秒前
是锦锦呀发布了新的文献求助60
17秒前
Khr1stINK发布了新的文献求助10
19秒前
20秒前
NexusExplorer应助Dddd采纳,获得10
22秒前
22秒前
Akim应助zhaowenxian采纳,获得10
23秒前
谦让的鹏煊完成签到,获得积分10
24秒前
zccc完成签到 ,获得积分10
25秒前
26秒前
hhzz发布了新的文献求助10
27秒前
坚定的雁完成签到 ,获得积分10
28秒前
29秒前
两先生完成签到 ,获得积分10
29秒前
豆dou发布了新的文献求助10
29秒前
丘比特应助SS采纳,获得10
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808